Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.DOI: http://dx.doi.org/10.7554/eLife.13424.001
Recent work on the biological basis of the male preponderance of autism and other neurodevelopmental disorders includes discussion of a higher genetic burden in females and sex-specific gene mutations or epigenetic changes that differentially confer risk to males or protection to females. Other mechanisms discussed are sex chromosome and sex hormone involvement. Specifically, fetal testosterone is involved in many aspects of development and may interact with neurotransmitter, neuropeptide, or immune pathways to contribute to male vulnerability. Finally, the possibilities of female underdiagnosis and a multi-hit hypothesis are discussed. This review highlights current theories of male bias in developmental disorders. Topics include environmental, genetic, and epigenetic mechanisms; theories of sex chromosomes, hormones, neuroendocrine, and immune function; underdiagnosis of females; and a multi-hit hypothesis.
The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a G␣s-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation.
Background Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated Protocadherin 10 (PCDH10), a member of the δ2 subfamily of non-clustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Methods Mice lacking one copy of Pcdh10 (Pcdh10+/−) and wildtype littermates (WT) were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in post-synaptic density fractions of amygdala. Results Male Pcdh10+/− mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in amygdala. Social approach deficits in Pcdh10+/− males were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Conclusions Our studies reveal that male Pcdh10+/− mice have synaptic and behavioral deficits, and establish Pcdh10+/− mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD.
Central oxytocin (OT) modulates many social behaviors, including female rat sexual receptivity, quantified as the copulatory stance known as lordosis. The expression of the lordosis response is modulated by OT action in the ventromedial nucleus of the hypothalamus (VMH), as demonstrated by behavioral pharmacology experiments. However, the subcellular localization of OT in this brain region has been unclear. We tested the hypothesis that ovarian hormones reorganize OT-labeled pre- or postsynaptic elements in the fiber complex lateral to the VMH by using immunoelectron microscopy. OT immunolabeling occurred in axonal boutons identified by the presence of small, clear synaptic vesicles and double labeling with the presynaptic markers synaptophysin and vesicular glutamate transporter 2. OT immunoreactivity also was observed in dendritic profiles, verified with double labeling for the dendrite-specific marker microtubule-associated protein 2. Ovarian hormones did not alter the density of axonal boutons; however, estradiol treatment reduced the density of dendritic profiles by 34%. This effect was reversed when progesterone was given subsequent to estradiol. The effect of estradiol treatment was specific to dendrites that lacked OT immunostaining; the density of OT-labeled dendritic profiles remained constant during estradiol treatment. With the estradiol-induced exit of non-OT-labeled dendritic profiles, the remaining OT-labeled dendritic profiles experienced an increase in their number of synaptic contacts. Thus, hormone treatments that mimic the 4- day rat estrous cycle provoke a chemically coded reorganization of dendrite innervation in the fiber plexus lateral to the VMH that may underlie the hormone-specific effect of OT on reproductive behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.