Roussi's landmark work on the generation of 1,3dipoles from tertiary amine N-oxides has not reached its full potential since its underlying mechanism is neither well explored nor understood. Two competing mechanisms were previously proposed to explain the transformation involving either an iminium ion or a diradical intermediate. Our investigation has revealed an alternative mechanistic pathway that explains experimental results and provides significant insights to guide the creation of new Noxide reagents beyond tertiary alkylamines for direct synthetic transformations. Truhlar's M06-2x functional and Møller−Plesset second-order perturbation theory with Dunning's [jul,aug]-cc-pv[D,T]z basis sets and discrete-continuum solvation models were employed to determine activation enthalpies and structures. During these mechanistic explorations, we discovered a unique multiion bridged pathway resulting from the rate-determining step, which was energetically more favorable than other alternate mechanisms. This newly proposed mechanism contains no electrophilic intermediates, strengthening the reaction potential by broadening the reagent scope and limiting the possible side reactions. This thoroughly defined general mechanism supports a more direct route for improving the use of N-oxides in generating azomethine ylide−dilithium oxide complexes with expanded functional group tolerance and breadth of chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.