The rapid exocytosis of von Willebrand factor (VWF) in response to vascular injury can be attributed to the fact that VWF is stored in the Weibel-Palade bodies (WPBs) of endothelial cells. We describe a system for examining the ability of VWF to drive both the formation of a storage compartment and the function of that compartment with respect to regulated secretion. Transient transfection of HEK293 cells with wild-type human VWF cDNA leads to the formation of numerous elongated organelles that resemble WPBs.These "pseudo-WPBs" exhibit the internal structure, as well as the ability to recruit membrane proteins including Pselectin, of bona fide WPBs. Finally, VWF was efficiently secreted upon stimulation by phorbol ester. We used this system to examine 3 VWF mutations leading to von Willebrand disease that affect VWF multimerization and constitutive secretion. Surprisingly we find that all 3 mutants can, to some extent, make pseudo-WPBs that recruit appropriate membrane proteins and that are responsive to secreta-
Summary. Background: Candidate von Willebrand factor (VWF) mutations were identified in 70% of index cases in the European study ‘Molecular and Clinical Markers for the Diagnosis and Management of type 1 von Willebrand Disease’. The majority of these were missense mutations. Objectives: To assess whether 14 representative missense mutations are the cause of the phenotype observed in the patients and to examine their mode of pathogenicity. Methods: Transfection experiments were performed with full‐length wild‐type or mutant VWF cDNA for these 14 missense mutations. VWF antigen levels were measured, and VWF multimer analysis was performed on secreted and intracellular VWF. Results: For seven of the missense mutations (G160W, N166I, L2207P, C2257S, C2304Y, G2441C, and C2477Y), we found marked intracellular retention and impaired secretion of VWF, major loss of high molecular weight multimers in transfections of mutant constructs alone, and virtually normal multimers in cotransfections with wild‐type VWF, establishing the pathogenicity of these mutations. Four of the mutations (R2287W, R2464C, G2518S, and Q2520P) were established as being very probably causative, on the basis of a mild reduction in the secreted VWF or on characteristic faster‐running multimeric bands. For three candidate changes (G19R, P2063S, and R2313H), the transfection results were indistinguishable from wild‐type recombinant VWF and we could not prove these changes to be pathogenic. Other mechanisms not explored using this in vitro expression system may be responsible for pathogenicity. Conclusions: The pathogenic nature of 11 of 14 candidate missense mutations identified in patients with type 1 VWD was confirmed. Intracellular retention of mutant VWF is the predominant responsible mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.