Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion-Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 Â 400 km MPAs) covers 24% (1 440 000 km 2 ) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management.
BackgroundAlthough polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested.Methodology/Principal FindingsSequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas.Conclusions/SignificanceResults of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor role in Arctic recolonization following deglaciation. This study highlights the value of DNA barcoding for providing rapid insights into species distributions and biogeographic patterns in understudied groups.
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.
Contracts are being granted, but protections are lagging
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.