CD40 function is initiated by tumor necrosis factor (TNF) receptor-associated factor (TRAF) adapter proteins, which play important roles in signaling by numerous receptors. Characterizing roles of individual TRAFs has been hampered by limitations of available experimental models and the poor viability of most TRAFdeficient mice. Here, B cell lines made deficient in TRAF2 using a novel homologous recombination system reveal new roles for TRAF2. We demonstrate that TRAF2 participates in synergy between CD40 and B cell antigen receptor signals, and in CD40-mediated, TNF-dependent IgM production. We also find that TRAF2 participates in the degradation of TRAF3 associated with CD40 signaling, a role that may limit inhibitory actions of TRAF3. Finally, we show that TRAF2 and TRAF6 have overlapping functions in CD40-mediated NF-B activation and CD80 up-regulation. These findings demonstrate previously unappreciated roles for TRAF2 in signaling by TNF receptor family members, using an approach that facilitates the analysis of genes critical to the viability of whole organisms.
Transient, genetic elimination of a specialized group of cells called plasmacytoid dendritic cells (pDCs) reverses many features of lupus in mice. Disease reduction was attributed in part to decreased expression of inflammatory molecules called interferons, which are produced primarily by pDCs.
Members of the TNFR family play critical roles in the regulation of the immune system. One member of the family critical for efficient activation of T-dependent humoral immune responses is CD40, a cell surface protein expressed by B cells and other APC. The cytoplasmic domain of CD40 interacts with several members of the TNFR-associated factor (TRAF) family, which link CD40 to intracellular signaling pathways. TRAF2 and 6 appear to play particularly important roles in CD40 signaling. Previous studies suggest that the two molecules have certain overlapping roles in signaling, but that unique roles for each molecule also exist. To better define the roles of TRAF2 and TRAF6 in CD40 signaling, we used somatic cell gene targeting to generate TRAF-deficient mouse B cell lines. A20.2J cells deficient in TRAF6 exhibit marked defects in CD40-mediated JNK activation and the up-regulation of CD80. Our previous experiments with TRAF2-deficient B cell lines suggest that TRAF6 and TRAF2 may have redundant roles in CD40-mediated NF-κB activation. Consistent with this hypothesis, we found CD40-mediated activation of NF-κB intact in TRAF6-deficient cells and defective in cells lacking both TRAF2 and TRAF6. Interestingly, we found that TRAF6 mutants defective in CD40 binding were able to restore CD40-mediated JNK activation and CD80 up-regulation in TRAF6-deficient cells, indicating that TRAF6 may be able to contribute to certain CD40 signals without directly binding CD40.
BAFF is an important prosurvival cytokine for mature B cells. However, previous studies have shown that BAFFR is already expressed at the immature B cell stage, and that the prosurvival protein Bcl-2 does not completely complement the B cell defects resulting from the absence of BAFFR or BAFF. Thus, we hypothesized that BAFF also functions to aid the differentiation of nonautoreactive immature B cells into transitional B cells and to promote their positive selection. We found that BAFFR is expressed at higher levels on nonautoreactive than on autoreactive immature B cells and that its expression correlates with that of surface IgM and with tonic BCR signaling. Our data indicate that BAFFR signaling enhances the generation of transitional CD23− B cells in vitro by increasing cell survival. In vivo, however, BAFFR signaling is dispensable for the generation of CD23− transitional B cells in the bone marrow, but it is important for the development of transitional CD23− T1 B cells in the spleen. Additionally, we show that BAFF is essential for the differentiation of CD23− into CD23+ transitional B cells both in vitro and in vivo through a mechanism distinct from that mediating cell survival, but requiring tonic BCR signaling. In summary, our data indicate that BAFFR and tonic BCR signals cooperate to enable nonautoreactive immature B cells to differentiate into transitional B cells and to be positively selected into the naive B cell repertoire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.