Abstract-Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is also known to induce monocyte adhesion by producing reactive oxygen species (ROS) from reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, raising the possibility that BMP4 may stimulate the inflammatory response by ROS-dependent mechanisms. Here we show that ROS scavengers blocked ICAM-1 expression and monocyte adhesion induced by BMP4 or OS in endothelial cells (ECs). Similar to OS, BMP4 stimulated H 2 O 2 and O 2 Ϫ production in ECs. Next, we used ECs obtained from p47phox Ϫ/Ϫ mice (MAE-p47 Ϫ/Ϫ ), which do not produce ROS in response to OS, to determine the role of NADPH oxidases. Similar to OS, BMP4 failed to induce monocyte adhesion in MAE-p47 Ϫ/Ϫ , but it was restored when the cells were transfected with p47 phox plasmid. Moreover, OS-induced O 2 Ϫ production was blocked by noggin (a BMP antagonist), suggesting a role for BMP. Furthermore, OS increased gp91phox (nox2) and nox1 mRNA levels while decreasing nox4. In contrast, BMP4 induced nox1 mRNA expression, whereas nox2 and nox4 were decreased or not affected, respectively. Also, OS-induced monocyte adhesion was blocked by knocking down nox1 with the small interfering RNA (siRNA). Finally, BMP4 siRNA inhibited OS-induced ROS production and monocyte adhesion. Together, these results suggest that BMP4 produced in ECs by OS stimulates ROS release from the nox1-dependent NADPH oxidase leading to inflammation, a critical early atherogenic step. Key words: BMP4 Ⅲ oscillatory shear Ⅲ reactive oxygen species Ⅲ monocyte adhesion Ⅲ endothelial cells Ⅲ NADPH oxidase V ascular endothelial cells (ECs) are constantly exposed to fluid shear stress, the frictional force generated by blood flow over the vascular endothelium. The importance of shear stress in vascular biology and pathophysiology has been highlighted by the focal development patterns of atherosclerosis in hemodynamically defined regions. For example, the regions of branched and curved arteries exposed to disturbed flow conditions including oscillatory shear stress (OS) correspond to "lesion-prone areas" that preferentially develop atherosclerosis. 1,2 In contrast, straight arteries exposed to steady, high levels of laminar shear stress (LS) are relatively well protected from atherosclerotic plaque development. 1,2 Atherosclerosis is an inflammatory disease preferentially occurring in lesion-prone areas. 2,3 The earliest measurable markers of atherogenesis include expression of inflammatory adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), and subsequent monocyte adhesion and recruitment into the lesion-prone areas. 2,4,5 Additional critical atherogen...
Objective-The similarities between valvular and vascular lesions suggest pathological initiation mediated through endothelium, but the role of hemodynamics in valvular endothelial biology is poorly understood. Methods and Results-Monolayers of porcine aortic endothelial cells (PAECs) or porcine aortic valve endothelial cells (PAVECs) were exposed to 20 dyne/cm 2 steady laminar shear stress for 48 hours, with static cultures serving as controls. Multiple microarray comparisons were made using RNA from sheared and control batches of both cell types. More than 400 genes were significantly differentially expressed in each comparison group. The resulting profiles were validated at the transcription and protein level and expression patterns confirmed in vivo by immunohistochemistry. PAVECs were found to be less intrinsically inflammatory than PAECs, but both cell types expressed similar antioxidant and antiinflammatory genes in response to shear stress. PAVECs expressed more genes associated with chondrogenesis, whereas PAECs expressed osteogenic genes, and shear stress had a protective effect against calcification. Conclusions-Transcriptional differences between PAVECs and PAECs highlight the valvular endothelial cell as a distinct organ system and suggest more attention needs to be given to valvular cells to further our understanding of similarities and differences between valvular and vascular pathology. Key Words: aortic valve Ⅲ shear stress Ⅲ inflammation Ⅲ calcification Ⅲ endothelial cell A ortic valve disease is associated with significant mortality and morbidity and is a strong risk factor for additional cardiovascular events. 1,2 Valvular degeneration is characterized by the development of stenosis or insufficiency, and by the time it is clinically manifested, it is usually only treatable by prosthetic valve replacement. 3 Explants of diseased valves reveal a wide spectrum of pathology, including sclerotic and calcific lesions, thrombus formations, bacterial vegetations, and fractured matrix fibers. 4,5 Aortic valve disease was originally thought to be the result of the continuous barrage of hemodynamic and mechanical forces over time, but recent evidence suggests a much more active biological progression involving inflammation, oxidation, angiogenesis, calcification, and osteogenesis. 6 -8 The vascular endothelium is a critical mediator of hemodynamic and humoral stimuli, and that endothelial inflammation and atherosclerosis occur preferentially at sites of disturbed or oscillatory flow. 9 Valvular endothelial dysfunction is also a hallmark of leaflet degeneration, and similarly characterized by the expression of proinflammatory adhesion receptors. 10,11 Interestingly, much of the aforementioned valvular pathology seems to occur preferentially on the aortic surface of the leaflet, which experiences a complex circulating flow that is different from the unidirectional flow on the ventricular side of the leaflet. This suggests that disturbed flow may play a causal role in the initiation of valvular pathology...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.