The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review article, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease.
CHKB encodes one of two mammalian choline kinase enzymes that catalyze the first step in the synthesis of the membrane phospholipid phosphatidylcholine. In humans and mice, inactivation of the CHKB gene (Chkb in mice) causes a recessive rostral-to-caudal muscular dystrophy. Using Chkb knockout mice, we reveal that at no stage of the disease is phosphatidylcholine level significantly altered. We observe that in affected muscle a temporal change in lipid metabolism occurs with an initial inability to utilize fatty acids for energy via mitochondrial β-oxidation resulting in shunting of fatty acids into triacyglycerol as the disease progresses. There is a decrease in peroxisome proliferator-activated receptors and target gene expression specific to Chkb−/− affected muscle. Treatment of Chkb−/− myocytes with peroxisome proliferator-activated receptor agonists enables fatty acids to be used for β-oxidation and prevents triacyglyerol accumulation, while simultaneously increasing expression of the compensatory choline kinase alpha (Chka) isoform, preventing muscle cell injury.
CHKB encodes one of two mammalian choline kinase enzymes that catalyze the first step in the synthesis of the major membrane phospholipid, phosphatidylcholine (PC). In humans, inactivation of the CHKB gene causes a recessive form of a rostral-to-caudal congenital muscular dystrophy. Using Chkb knockout mice, we reveal that at no stage of the disease is PC level significantly altered. Instead, at early stages of the disease the level of mitochondrial specific lipids acylcarnitine (AcCa) and cardiolipin (CL) increase 15-fold and 10-fold, respectively. Importantly, these changes are only observed in affected muscle and contribute to the decrease in the skeletal muscle functional output in these mice. As the disease progresses, AcCa and CL levels normalize and there is a 12-fold increase in the neutral storage lipid triacylgycerol and a 3-fold increase in its upstream lipid diacylglycerol. Our findings indicate that the major changes in lipid metabolism upon loss of function of Chkb is not a change in PC level, but instead is an initial inability to utilize fatty acids for energy resulting in shunting of fatty acids into triacyglycerol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.