The physical and chemical environment inside cells is of fundamental importance to all life but has traditionally been difficult to determine on a subcellular basis. Here we combine cutting-edge genomically integrated FRET biosensing to readout localized molecular crowding in single live yeast cells. Confocal microscopy allows us to build subcellular crowding heatmaps using ratiometric FRET, while whole-cell analysis demonstrates crowding is reduced when yeast is grown in elevated glucose concentrations. Simulations indicate that the cell membrane is largely inaccessible to these sensors and that cytosolic crowding is broadly uniform across each cell over a timescale of seconds. Millisecond single-molecule optical microscopy was used to track molecules and obtain brightness estimates that enabled calculation of crowding sensor copy numbers. The quantification of diffusing molecule trajectories paves the way for correlating subcellular processes and the physicochemical environment of cells under stress.
In eukaryotes, intracellular physico-chemical properties like macromolecular crowding and cytoplasmic viscoelasticity influence key processes such as metabolic activities, molecular diffusion and protein folding. However, mapping crowding and viscoelasticity in living cells remains challenging. One approach uses passive rheology in which diffusion of exogenous fluorescent particles internalized in cells is tracked and physico-chemical properties inferred from derived mean square displacement relations. Recently, the crGE2.3 Förster resonance energy transfer biosensor was developed to quantify crowding in cells, though it is unclear how this readout depends on viscoelasticity and the molecular weight of the crowder. Here, we present correlative, multi-dimensional data to explore diffusion and molecular crowding characteristics of molecular crowding agents using super-resolved fluorescence microscopy and ensemble time-resolved spectroscopy. We firstly characterize in vitro and then apply these insights to live cells of budding yeast Saccharomyces cerevisiae . It is to our knowledge the first time this has been attempted. We demonstrate that these are usable both in vitro and in the case of endogenously expressed sensors in live cells. Finally, we present a method to internalize fluorescent beads as in situ viscoelasticity markers in the cytoplasm of live yeast cells and discuss limitations of this approach including impairment of cellular function.
Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding whilst simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronised cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.
The physical and chemical environment inside cells is of fundamental importance to all life but has traditionally been difficult to determine on a subcellular basis. Here we combine cutting-edge genomically integrated FRET biosensing to readout localized molecular crowding in single live yeast cells. Confocal microscopy allows us to build subcellular crowding heatmaps using ratiometric FRET, while whole-cell analysis demonstrates crowding is reduced when yeast is grown in elevated glucose concentrations. Simulations indicate that the cell membrane is largely inaccessible to these sensors and that cytosolic crowding is broadly uniform across each cell over a timescale of seconds. Millisecond single-molecule optical microscopy was used to track molecules and obtain brightness estimates that enabled calculation of crowding sensor copy numbers. The quantification of diffusing molecule trajectories paves the way for correlating subcellular processes and the physicochemical environment of cells under stress.
Amyloid fibrils formed by the α‐Synuclein (α‐Syn) protein are the pathological hallmark of multiple human disorders, generally termed α‐synucleinopathies. The aggregation process of α‐Syn into amyloids appears to be highly dependent on the presence of: i) hydrophobic–hydrophilic interfaces, and ii) pre‐formed seed fibrils. By combining Thioflavin T binding measurements with different microscopy techniques (direct stochastic optical reconstruction microscopy, atomic force microscopy, correlative super‐resolution light microscopy, and scanning electron microscopy), the effect of the air–water interface (AWI) is tested on seeded α‐Syn aggregation. The correlation of the results provided by each method reveals striking differences in the mechanism of formation, yield, length, thickness, and morphology of fibrils obtained from samples having equal initial amounts of seeds and monomers, but incubated in the presence or absence of an AWI. Overall, the results indicate that the AWI determines how amyloids grow and proliferate, the final balance between monomer and aggregates, and the morphological properties of the aggregates themselves. These observations may set the basis for amplifying and tuning the properties of specific fibril polymorphs of interest, in structural biology and cytotoxicity studies, as well as in those materials science applications featuring amyloids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.