Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging.
Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP.
Visualization of cancer-associated alterations of molecular phenotype using radionuclide imaging is a noninvasive approach to stratifying patients for targeted therapies. The engineered albumin-binding domain-derived affinity protein (ADAPT) is a promising tracer for radionuclide molecular imaging because of its small size (6.5 kDa), which satisfies the precondition for efficient tumor penetration and rapid clearance. Previous studies demonstrated that the human epidermal growth factor receptor type 2 (HER2)-targeting ADAPT6 labeled with radiometals at the N terminus is able to image HER2 expression in xenografts a few hours after injection. The aim of this study was to evaluate whether the use of a nonresidualizing label or placement of the labels at the C terminus would further improve the targeting properties of ADAPT6. Two constructs, Cys-ADAPT6 and Cys-ADAPT6, having the (HE)DANS sequence at the N terminus were produced and site-specifically labeled using In-DOTA orI-iodo-((4-hydroxyphenyl)ethyl) maleimide (HPEM). The conjugates were compared in vitro and in vivo. HER2-targeting properties and biodistribution were evaluated in BALB/C mice bearing ovarian carcinoma cell (SKOV-3) xenografts. Specific HER2 binding and high affinity were preserved after labeling. Both Cys-ADAPT6 and Cys-ADAPT6 were internalized slowly by HER2-expressing cancer cells. Depending on the label position, uptake at 4 h after injection varied from 10% to 22% of the injected dose per gram of tumor tissue. Regardless of terminus position, the I-HPEM label provided more than 140-fold lower renal uptake than theIn-DOTA label at 4 after injection. The tumor-to-organ ratios were, in contrast, higher for both of the In-DOTA-labeled ADAPT variants in other organs. Tumor-to-blood ratios forIn-labeled Cys-ADAPT6 and Cys-ADAPT6 did not differ significantly (250-280), but In-DOTA-Cys-ADAPT6 provided significantly higher tumor-to-lung, tumor-to-liver, tumor-to-spleen, and tumor-to-muscle ratios. Radioiodinated variants had similar tumor-to-organ ratios, but I-HPEM-Cys-ADAPT6 had significantly higher tumor uptake and a higher tumor-to-kidney ratio. Residualizing properties of the label strongly influence the targeting properties of ADAPT6. The position of the radiolabel influences targeting as well, although to a lesser extent. Placement of a label at the C terminus yields the best biodistribution features for both radiometal and radiohalogen labels. Low renal retention of the radioiodine label creates a precondition for radionuclide therapy usingI-labeled HPEM-Cys-ADAPT6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.