The aerenchymal transport of oxygen to rice roots has significantly influenced the anaerobic root zone of flooded paddy soils. Therefore, the visualization of redox dynamics may be useful to characterize rice root oxidation potentials and the dynamics of redox-influenced ions in the root zone of paddy soils. In order to investigate the interaction between root oxidation potential and Fe uptake of (a) six different rice cultivars (Oryza sativa L.; Chuchung, Dongjin, Ilmi, Junam, Nampyeong, and Samkwang) were monitored in a flooded paddy soil with the aid of rhizotron experiment throughout the vegetation period, (b) digital images of the root zone were taken at the important growing stages, and (c) rice Fe uptake was characterized simultaneously. The images were processed by image analysis to display the reduction and oxidation areas in the root zones, and the distinct areas which were colorized due to varying soil redox changes were localized and quantified. Oxidized areas were mainly observed in the surrounding active roots and in a distinct layer on the soil surface. The selected rice cultivars have shown significantly different root-oxidized areas at the same rice growing stage. Root-oxidized area was significantly and positively correlated with total Fe content of rice root, but negatively correlated with the inner root Fe content. Rice cultivars having higher root oxidation potential precipitated more Fe on the outer root surface in the form of Fe plaques. In conclusion, digital image analysis is an effective tool for evaluating the oxidizing potential of rice root under anaerobic soil condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.