Circadian (daily) rhythms are present in almost all plants and animals. In mammals, a brain clock located in the hypothalamic suprachiasmatic nucleus maintains synchrony between environmental light/ dark cycles and physiology and behavior. Over the past 100 y, especially with the advent of electric lighting, modern society has resulted in a round-the-clock lifestyle, in which natural connections between rest/activity cycles and environmental light/dark cycles have been degraded or even broken. Instances in which rapid changes to sleep patterns are necessary, such as transmeridian air travel, demonstrate negative effects of acute circadian disruption on physiology and behavior. However, the ramifications of chronic disruption of the circadian clock for mental and physical health are not yet fully understood. By housing mice in 20-h light/dark cycles, incongruous with their endogenous ∼24-h circadian period, we were able to model the effects of chronic circadian disruption noninvasively. Housing in these conditions results in accelerated weight gain and obesity, as well as changes in metabolic hormones. In the brain, circadian-disrupted mice exhibit a loss of dendritic length and decreased complexity of neurons in the prelimbic prefrontal cortex, a brain region important in executive function and emotional control. Disrupted animals show decreases in cognitive flexibility and changes in emotionality consistent with the changes seen in neural architecture. How our findings translate to humans living and working in chronic circadian disruption is unknown, but we believe that this model can provide a foundation to understand how environmental disruption of circadian rhythms impacts the brain, behavior, and physiology.cognitive function | neuronal remodeling | structural plasticity | biological clock C ircadian (daily) rhythms in physiology and behavior are phylogenetically ancient and are present in almost all plants and animals (1). In mammals, these rhythms are generated by a master circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus, which in turn synchronizes peripheral oscillators throughout the brain and body in almost all cell types and organ systems (2). Though circadian rhythms are phylogenetically ancient, modern industrialized society and the ubiquity of electric lighting has resulted in a fundamental alteration in the relationship between an individual's endogenous circadian rhythmicity and the external environment. The ramifications of this desynchronization for mental and physical health are not fully understood, although numerous lines of evidence are emerging that link defects in circadian timing with negative health outcomes (2, 3). Animal models have shown that chronic circadian disruption can alter mortality rates in tau mutant hamsters (4) and in aged mice (5). The current obesity epidemic in Western societies has also occurred hand-inhand with a gradual decrease in sleep time and sleep quality (6), and although largely correlative, a potential causal link is plausible. Indivi...
Numerous clinical and experimental studies have linked stress to changes in risk factors associated with the development of physiological syndromes, including metabolic disorders. How different mediators of the stress response, such as corticosterone (CORT), influence these changes in risk remains unclear. Although CORT has beneficial short-term effects, long-term CORT exposure can result in damage to the physiological systems it protects acutely. Disruption of this important physiologic signal is observed in numerous disparate disorders, ranging from depression to Cushing's syndrome. Thus, understanding the effects of chronic high CORT on metabolism and physiology is of key importance. We explored the effects of 4-wk exposure to CORT dissolved in the drinking water on the physiology and behavior of male mice. We used this approach as a noninvasive way of altering plasma CORT levels while retaining some integrity in the diurnal rhythm present in normal animals. This approach has advantages over methods involving constant CORT pellets, CORT injections, or adrenalectomy. We found that high doses of CORT (100 microg/ml) result in rapid and dramatic increases in weight gain, increased adiposity, elevated plasma leptin, insulin and triglyceride levels, hyperphagia, and decreased home-cage locomotion. A lower dose of CORT (25 microg/ml) resulted in an intermediate phenotype in some of these measures but had no effect on others. We propose that the physiological changes observed in the high-CORT animals approximate changes observed in individuals suffering from the metabolic syndrome, and that they potentially serve as a model for hypercortisolemia and stress-related obesity.
SUMMARY Experience rearranges anatomical connectivity in the brain, but such plasticity is suppressed in adulthood. We examined the turnover of dendritic spines and axonal varicosities in the somatosensory cortex of mice lacking Nogo Receptor 1 (NgR1). Through adolescence, the anatomy and plasticity of ngr1 null mice are indistinguishable from control, but suppression of turnover after age 26 days fails to occur in ngr1−/− mice. Adolescent anatomical plasticity can be restored to one-year old mice by conditional deletion of ngr1. Suppression of anatomical dynamics by NgR1 is cell autonomous, and is phenocopied by deletion of Nogo-A ligand. Whisker removal deprives the somatosensory cortex of experience-dependent input and reduces dendritic spine turnover in adult ngr1−/− mice to control levels, while an acutely enriched environment increases dendritic spine dynamics in control mice to the level of ngr1−/− mice in a standard environment. Thus, NgR1 determines the low set point for synaptic turnover in adult cerebral cortex.
Progranulin (PGRN) is implicated in Alzheimer’s disease (AD) as well as frontotemporal lobar degeneration. Genetic studies demonstrate an association of the common GRN rs5848 variant that results in reduced PGRN levels with increased risk for AD. However, the mechanisms by which PGRN reduction from the GRN AD risk variant or mutation exacerbates AD pathophysiology remain ill defined. Here, we show that the GRN AD risk variant has no significant effects on florbetapir positron emission tomographic amyloid imaging and cerebrospinal fluid (CSF) Aβ levels, whereas it is associated with increased CSF tau levels in human subjects of the Alzheimer’s disease neuroimaging initiative studies. Consistent with the human data, subsequent analyses using the APPswe/PS1ΔE9 (APP/PS1) mouse model of cerebral amyloidosis show that PGRN deficiency has no exacerbating effects on Aβ pathology. In contrast and unexpectedly, PGRN deficiency significantly reduces diffuse Aβ plaque growth in these APP/PS1 mice. This protective effect is due, at least in part, to enhanced microglial Aβ phagocytosis caused by PGRN deficiency-induced expression of TYROBP network genes (TNG) including an AD risk factor Trem2. PGRN-deficient APP/PS1 mice also exhibit less severe axonal dystrophy and partially improved behavior phenotypes. While PGRN deficiency reduces these amyloidosis-related phenotypes, other neuronal injury mechanisms are increased by loss of PGRN, revealing a multidimensional interaction of GRN with AD. For example, C1q complement deposition at synapses is enhanced in APP/PS1 mice lacking PGRN. Moreover, PGRN deficiency increases tau AT8 and AT180 pathologies in human P301L tau-expressing mice. These human and rodent data suggest that global PGRN reduction induces microglial TNG expression and increases AD risk by exacerbating neuronal injury and tau pathology, rather than by accelerating Aβ pathology.
Numerous clinical and experimental studies have linked stress to changes in risk factors associated with the development of physiological syndromes, including metabolic disorders. How different mediators of the stress response, such as corticosterone (CORT), influence these changes in risk remains unclear. Although CORT has beneficial short-term effects, long-term CORT exposure can result in damage to the physiological systems it protects acutely. Disruption of this important physiologic signal is observed in numerous disparate disorders, ranging from depression to Cushing’s syndrome. Thus, understanding the effects of chronic high CORT on metabolism and physiology is of key importance. We explored the effects of 4-wk exposure to CORT dissolved in the drinking water on the physiology and behavior of male mice. We used this approach as a noninvasive way of altering plasma CORT levels, whereas retaining some integrity in the diurnal rhythm present in normal animals. This approach has advantages over methods involving constant CORT pellets, CORT injections, or adrenalectomy. We found that high doses of CORT (100 μg/ml) result in rapid and dramatic increases in weight gain, increased adiposity, elevated plasma leptin, insulin and triglyceride levels, hyperphagia, and decreased home-cage locomotion. A lower dose of CORT (25 μg/ml) resulted in an intermediate phenotype in some of these measures, whereas having no effect on others. We propose that the physiological changes observed in the high-CORT animals approximate changes observed in individuals suffering from the metabolic syndrome and that they potentially serve as a model for hypercortisolemia and stress-related obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.