BackgroundThe next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object.MethodsThis systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance.ResultsModel-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent’s characteristic response of producing irregular ISIs is shown to be controllable via manipulating the output filtering from the sensor or adding stochastic noise.ConclusionsThis integrated engineering approach extends prior works focused upon neural dynamics and vibration. Future efforts will perfect measures of performance, such as first spike latency and irregular ISIs, and link the generation of characteristic features within trains of action potentials with current pulse waveforms that stimulate single action potentials at the peripheral afferent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.