The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHV⌬nsp2 and SARS⌬nsp2, respectively). Infectious MHV⌬nsp2 and SARS⌬nsp2 viruses recovered from electroporated cells had 0.5 to 1 log 10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The ⌬nsp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHV⌬nsp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHV⌬nsp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function.Positive-stranded RNA viruses express polyproteins from their input genome RNA that are proteolytically processed by viral and cellular proteinases to yield nonstructural proteins, structural proteins, or both. This strategy results in evolutionary, organizational, and functional linkages between protein domains at the levels of RNA sequence, protein translation, proteolytic processing at specific cleavage sites, and functions of intermediate precursor proteins and mature proteins. The multiple points of regulation present a formidable theoretical barrier to extensive deletions or insertions in polyproteins.
Mouse hepatitis virus (MHV) RNA synthesis is mediated by a viral RNA-dependent RNA polymerase (RdRp) on membrane-bound replication complexes in the host cell cytoplasm. However, it is not known how the putative MHV RdRp (Pol) is targeted to and retained on cellular membranes. In this report, we show that a 100-kDa protein was stably detected by an anti-Pol antiserum as a mature product throughout the virus life cycle. Gradient fractionation and biochemical extraction experiments demonstrated that Pol was not an integral membrane protein but was tightly associated with membranes and coimmunoprecipitated with the replicase proteins 3CLpro, p22, and p12. By immunofluorescence confocal microscopy, Pol colocalized with viral proteins at replication complexes, distinct from sites of virion assembly, over the entire course of infection. To determine if Pol associated with cellular membranes in the absence of other viral factors, the pol domain of gene 1 was cloned and expressed in cells as a fusion with green fluorescent protein, termed Gpol. In Gpol-expressing cells that were infected with MHV, but not in mock-infected cells, Gpol relocalized from a diffuse distribution in the cytoplasm to punctate foci that colocalized with markers for replication complexes. Expression of Gpol deletion mutants established that the conserved enzymatic domains of Pol were dispensable for replication complex association, but a 38-amino-acid domain in the RdRp unique region of Pol was required. This study demonstrates that viral or virus-induced factors are necessary for Pol to associate with membranes of replication complexes, and it identifies a defined region of Pol that may mediate its interactions with those factors.For all known positive-strand RNA viruses, RNA synthetic activity occurs on viral replication complexes that are derived from cellular membranes and is mediated by viral RNA-dependent RNA polymerases (RdRps). Recent evidence suggests that viruses in the order Nidovirales, including coronaviruses and arteriviruses, replicate their RNA at double-membrane vesicles in the host cell cytoplasm (19,35). For the coronaviruses, a diverse family of positive-strand RNA viruses, it is not known how viral replication complexes are formed or how replicase proteins are recruited to and remain associated with cellular membranes. Although a core RdRp has been predicted based on sequence analysis, and membrane-associated RdRp activity has been detected in coronavirus-infected cells, the function of this putative enzyme has not been confirmed experimentally (1,6,16,18,27). As such, determination of the expression, intracellular localization, and membrane targeting of the coronavirus RdRp is central to understanding the functions of this protein during viral RNA synthesis.Mouse hepatitis virus (MHV) is a well-established model for studies of the replication and pathogenesis of coronaviruses. MHV contains a positive-strand RNA genome of approximately 32,000 nucleotides (nt) that serves as a template for the synthesis of multiple RNA species ...
Despite ongoing research investigating mechanisms of coronavirus replication, functions of many viral nonstructural proteins (nsps) remain unknown. In the current study, a reverse genetic approach was used to define the role of the 28-kDa amino-terminal product (nsp1) of the gene 1 polyprotein during replication of the coronavirus murine hepatitis virus (MHV) in cell culture. To determine whether nsp1 is required for MHV replication and to identify residues critical for protein function, mutant viruses that contained deletions or point mutations within the nsp1-coding region were generated and assayed for defects in viral replication, viral protein expression, protein localization, and RNA synthesis. The results demonstrated that the carboxy-terminal half of nsp1 (residues K(124) through L(241)) was dispensable for virus replication in culture but was required for efficient proteolytic cleavage of nsp1 from the gene 1 polyprotein and for optimal viral replication. Furthermore, whereas deletion of nsp1 residues amino-terminal to K(124) failed to produce infectious virus, point mutagenesis of the nsp1 amino-terminus allowed recovery of several mutants with altered replication and RNA synthesis. This study identifies nsp1 residues important for protein processing, viral RNA synthesis, and viral replication.
The p28 and p65 proteins of mouse hepatitis virus (MHV) are the most amino-terminal protein domains of the replicase polyprotein. Cleavage between p28 and p65 has been shown to occur in vitro at cleavage site 1 (CS1), 247 Gly2Val 248 , in the polyprotein. Although critical residues for CS1 cleavage have been mapped in vitro, the requirements for cleavage have not been studied in infected cells. To define the determinants of CS1 cleavage and the role of processing at this site during MHV replication, mutations and deletions were engineered in the replicase polyprotein at CS1. Mutations predicted to allow cleavage at CS1 yielded viable virus that grew to wild-type MHV titers and showed normal expression and processing of p28 and p65. Mutant viruses containing predicted noncleaving mutations or a CS1 deletion were also viable but demonstrated delayed growth kinetics, reduced peak titers, decreased RNA synthesis, and small plaques compared to wild-type controls. No p28 or p65 was detected in cells infected with predicted noncleaving CS1 mutants or the CS1 deletion mutant; however, a new protein of 93 kDa was detected. All introduced mutations and the deletion were retained during repeated virus passages in culture, and no phenotypic reversion was observed. The results of this study demonstrate that cleavage between p28 and p65 at CS1 is not required for MHV replication. However, proteolytic separation of p28 from p65 is necessary for optimal RNA synthesis and virus growth, suggesting important roles for these proteins in the formation or function of viral replication complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.