The synthesis and structural characterization of three-coordinate iron(II) and cobalt(II) complexes supported by new N-phosphinoamidinate ligands is reported, along with the successful application of these complexes as precatalysts for the challenging room-temperature hydrosilylation of carbonyl compounds to afford alcohols upon workup. Under the rigorous screening conditions employed (0.015 mol % Fe) for the reduction of acetophenone, the well-defined iron(II) amido precatalyst 2b, featuring bulky N-2,6-diisopropylphenyl and di-tert-butylphosphino moieties within the N-phosphinoamidinate ligand, exhibited exceptional catalytic performance. Further experimentation revealed that the yield achieved in the hydrosilylation of acetophenone employing 2b was unaltered when conducting reactions in the absence of light, in the presence of excess mercury, or under solvent-free conditions. Notably, precatalyst 2b was found to exhibit the broadest substrate scope reported to date for such room-temperature iron-catalyzed carbonyl hydrosilylations en route to alcohols, enabling the chemoselective reduction of structurally diverse aldehydes and ketones, as well as for the first time esters, at remarkably low loadings (0.01−1.0 mol % Fe) and using only 1 equiv of phenylsilane reductant.
Over the past two decades, considerable attention has been given to the development of new ligands for the palladium-catalyzed arylation of amines and related NH-containing substrates (i.e., Buchwald-Hartwig amination). The generation of structurally diverse ligands, by research groups in both academia and industry, has facilitated the accommodation of sterically and electronically divergent substrates including ammonia, hydrazine, amines, amides, and NH heterocycles. Despite these achievements, problems with catalyst generality persist and access to multiple ligands is necessary to accommodate all of these NH-containing substrates. In our quest to address this significant limitation we identified the BippyPhos/[Pd(cinnamyl)Cl]2 catalyst system as being capable of catalyzing the amination of a variety of functionalized (hetero)aryl chlorides, as well as bromides and tosylates, at moderate to low catalyst loadings. The successful transformations described herein include primary and secondary amines, NH heterocycles, amides, ammonia and hydrazine, thus demonstrating the largest scope in the NH-containing coupling partner reported for a single Pd/ligand catalyst system. We also established BippyPhos/[Pd(cinnamyl)Cl]2 as exhibiting the broadest demonstrated substrate scope for metal-catalyzed cross-coupling of (hetero)aryl chlorides with NH indoles. Furthermore, the remarkable ability of BippyPhos/[Pd(cinnamyl)Cl]2 to catalyze both the selective monoarylation of ammonia and the N-arylation of indoles was exploited in the development of a new one-pot, two-step synthesis of N-aryl heterocycles from ammonia, ortho-alkynylhalo(hetero)arenes and (hetero) aryl halides through tandem N-arylation/hydroamination reactions. Although the scope in the NH-containing coupling partner is broad, BippyPhos/[Pd(cinnamyl)Cl]2 also displays a marked selectivity profile that was exploited in the chemoselective monoarylation of substrates featuring two chemically distinct NH-containing moieties.
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacenes (F-BODIPYs) have been deprotected to give the corresponding free-base dipyrrins by heating a solution of the F-BODIPY in tert-butanol under 600 W of microwave irradiation in the presence of 6 equiv of potassium tert-butoxide for 40 min at 92 degrees C. Investigations of BODIPY modification at the meso position have also been undertaken and a meso-butyl product has been isolated.
Cl-BODIPYs, synthesized in high yields from dipyrrins under air- and moisture-free conditions, are extremely facile to substitution at boron compared to their corresponding F-BODIPYs, opening up a new route to BODIPYs functionalized at boron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.