Risky decision-making lies at the center of the COVID-19 pandemic and will determine future viral outbreaks. Therefore, a critical evaluation of major explanations of such decision-making is of acute practical importance. We review the underlying mechanisms and predictions offered by expectancy-value and dual-process theories. We then highlight how fuzzy-trace theory builds on these approaches and provides further insight into how knowledge, emotions, values, and metacognitive inhibition influence risky decision-making through its unique mental representational architecture (i.e., parallel verbatim and gist representations of information). We discuss how social values relate to decision-making according to fuzzy-trace theory, including how categorical gist representations cue core values. Although gist often supports health-promoting behaviors such as vaccination, social distancing, and mask-wearing, why this is not always the case as with status-quo gist is explained, and suggestions are offered for how to overcome the “battle for the gist” as it plays out in social media.
Theory—understanding mental processes that drive decisions—is important to help patients and providers make decisions that reflect medical advances and personal values. Building on a 2008 review, we summarize current tenets of fuzzy-trace theory (FTT) in light of new evidence that provides insight regarding mental representations of options and how such representations connect to values and evoke emotions. We discuss implications for communicating risks, preventing risky behaviors, discouraging misinformation, and choosing appropriate treatments. Findings suggest that simple, fuzzy but meaningful gist representations of information often determine decisions. Within minutes of conversing with their doctor, reading a health-related web post, or processing other health information, patients rely on gist memories of that information rather than verbatim details. This fuzzy-processing preference explains puzzles and paradoxes in how patients (and sometimes providers) think about probabilities (e.g., “50-50” chance), outcomes of treatment (e.g., with antibiotics), experiences of pain, end-of-life decisions, memories for medication instructions, symptoms of concussion, and transmission of viruses (e.g., in AIDS and COVID-19). As examples, participation in clinical trials or seeking treatments with low probabilities of success (e.g., with antibiotics or at the end of life) may indicate a defensibly different categorical gist perspective on risk as opposed to simply misunderstanding probabilities or failing to make prescribed tradeoffs. Thus, FTT explains why people avoid precise tradeoffs despite computing them. Facilitating gist representations of information offers an alternative approach that goes beyond providing uninterpreted “neutral” facts versus persuading or shifting the balance between fast versus slow thinking (or emotion vs. cognition). In contrast to either taking mental shortcuts or deliberating about details, gist processing facilitates application of advanced knowledge and deeply held values to choices. Highlights Fuzzy-trace theory (FTT) supports practical approaches to improving health and medicine. FTT differs in important respects from other theories of decision making, which has implications for how to help patients, providers, and health communicators. Gist mental representations emphasize categorical distinctions, reflect understanding in context, and help cue values relevant to health and patient care. Understanding the science behind theory is crucial for evidence-based medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.