Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of β-lactamases, enzymes that inactivate β-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new β-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine β-lactamase inhibitors that potently inhibit clinically relevant class A, C and D β-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of β-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam-ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.
Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis-DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 microM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.
A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. Resistance to the sulfonyl piperazine maps to LpxH, which catalyzes the fourth step in the synthesis of lipid A, the outer membrane anchor of lipopolysaccharide (LPS). To our knowledge, this compound is the first reported inhibitor of LpxH. Resistance to the pyrazole compound mapped to mutations in either LolC or LolE, components of the essential LolCDE transporter complex, which is required for trafficking of lipoproteins to the outer membrane. Biochemical experiments with E. coli spheroplasts showed that the pyrazole compound is capable of inhibiting the release of lipoproteins from the inner membrane. Both of these compounds have significant promise as chemical probes to further interrogate the potential of these novel cell wall components for antimicrobial therapy. IMPORTANCEThe prevalence of antibacterial resistance, particularly among Gram-negative organisms, signals a need for novel antibacterial agents. A phenotypic screen using AmpC as a sensor for compounds that inhibit processes involved in Gram-negative envelope biogenesis led to the identification of two novel inhibitors with unique mechanisms of action targeting Escherichia coli outer membrane biogenesis. One compound inhibits the transport system for lipoprotein transport to the outer membrane, while the other compound inhibits synthesis of lipopolysaccharide. These results indicate that it is still possible to uncover new compounds with intrinsic antibacterial activity that inhibit novel targets related to the cell envelope, suggesting that the Gram-negative cell envelope still has untapped potential for therapeutic intervention.
Vibrio cholerae, the cause of cholera, has two circular chromosomes. The parAB genes on each V. cholerae chromosome act to control chromosome segregation in a replicon-specific fashion. The chromosome I (ChrI) parAB genes (parAB1) govern the localization of the origin region of ChrI, while the chromosome II (ChrII) parAB genes (parAB2) control the segregation of ChrII. In addition to ParA and ParB proteins, Par systems require ParB binding sites (parS). Here we identified the parS sites on both V. cholerae chromosomes. We found three clustered origin-proximal ParB1 binding parS1 sites on ChrI. Deletion of these three parS1 sites abrogated yellow fluorescent protein (YFP)-ParB1 focus formation in vivo and resulted in mislocalization of the ChrI origin region. However, as observed in a parA1 mutant, mislocalization of the ChrI origin region in the parS1 mutant did not compromise V. cholerae growth, suggesting that additional (non-Par-related) mechanisms may mediate the partitioning of ChrI. We also identified 10 ParB2 binding parS2 sites, which differed in sequence from parS1. Fluorescent derivatives of ParB1 and ParB2 formed foci only with the cognate parS sequence. parABS2 appears to form a functional partitioning system, as we found that parABS2 was sufficient to stabilize an ordinarily unstable plasmid in Escherichia coli. Most parS2 sites were located within 70 kb of the ChrII origin of replication, but one parS2 site was found in the terminus region of ChrI. In contrast, in other sequenced vibrio species, the distribution of parS1 and parS2 sites was entirely chromosome specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.