During cell cultivation processes for the production of biopharmaceuticals, good process performance and good product quality can be ensured by online monitoring of critical process parameters (e.g. temperature, pH, or dissolved oxygen). These data can be used in real‐time for process control, as suggested by the process analytical technology (PAT) initiative. Today, solutions for real‐time monitoring of parameters such as concentrations of cells, main nutrients, and metabolism by‐products are developing, but applications of these more complex tools in industrial settings are still limited. Here, we evaluated the use of dielectric spectroscopy (DS) and near‐infrared spectroscopy (NIRS) as PAT tools for a perfusion PER.C6® cultivation process. We showed that DS enabled predictions of viable cell density from the cultivation vessel, with a root mean square error of prediction (RMSEP) of 4.4% of the calibration range. Additionally, predictions of glucose and lactate concentrations from the cultivation vessel (RMSEP of 10 and 14%, respectively) and from the perfusion stream (RMSEP of 12 and 10%, respectively) were achieved with NIRS. We also showed that the perfusion stream offers great opportunities for noninvasive, yet frequent process monitoring. Accurate online monitoring of critical process parameters with PAT tools is the essential first step toward increased control of process output.
Preventing or delaying cell death is a challenge in mammalian cell cultures for the development and optimization of production processes for biopharmaceuticals. Cell cultures need to be maintained highly viable for extended times in order to reach maximum production yields. Moreover, programmed cell death through apoptosis is often believed to occur without being detected by classical viability measurements. In this study, we characterized cell death in PER.C6® batch and perfusion cultures using three flow cytometry techniques measuring different steps of the apoptosis cascade: DNA fragmentation, caspases activation and phosphatidylserine externalization. We showed that apoptosis is the main pathway of PER.C6® cell death in batch cultures after depletion of main carbon sources. In high cell density perfusion cultures fed at a constant specific perfusion rate, both high viability and very limited apoptosis were observed. When extending this perfusion process far beyond standard operations, cultures were exposed to suboptimal process conditions, which resulted in an increase of apoptotic cell death. Moreover, we showed that the reference viability measurement using trypan blue exclusion properly assesses the level of cell death in PER.C6® cultures. This study is a first step in understanding the mechanisms of PER.C6® cell death, which will be helpful to support applications of the cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.