Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.
Prediction of single-cross hybrid performance has been a major goal of plant breeders since the beginning of hybrid breeding. Genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single cross performance. Most of the studies rather focused on predicting top cross performance using single tester to determine the inbred parent’s worth in hybrid combinations. Moreover, no studies have examined the potential of predicting single crosses made among random progenies derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objective of this study was to evaluate the potential of genomic prediction for identifying superior single crosses early in the breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single-cross hybrids representing the Iowa Stiff Stalk Synthetic/Non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The single cross prediction accuracies estimated using cross-validation ranged from 0.40 to 0.74 for grain yield, 0.68 to 0.91 for plant height and 0.54 to 0.94 for staygreen depending on the number of tested parents of the single crosses. The genomic estimated general and specific combining abilities showed a clear advantage over the use of genomic covariances among single crosses, especially when one or both parents of the single cross were untested in hybrid combinations. Overall, our results suggest that genomic prediction of the performance of single crosses made using random progenies from the early stages of the breeding pipeline holds great potential to re-design hybrid breeding and increase its efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.