Dominance hierarchies are common across the animal kingdom and have important consequences for reproduction and survival. Animals of lower social status cope with repeated social defeat using proactive and reactive behaviours. However, there remains a paucity of information on how an individual’s coping behaviours changes over time or what neural mechanisms are involved. We used a resident-intruder paradigm in the African cichlid fish Astatotilapia burtoni to investigate the neural correlates of these two opposing behaviour groups. Fish initially used both proactive and reactive behaviours, but had a dramatic increase in use of proactive behaviours during the third interaction, and this was followed by cessation of proactive behaviours and exclusive use of reactive coping. By quantifying neural activation in socially-relevant brain regions, we identify a subset of brain nuclei, including those homologous to the mammalian amygdala, showing higher activation in fish displaying proactive but not reactive behaviours. Fish displaying reactive behaviours had greater neural activation in the superior raphe, suggesting a possible conserved function during social defeat across vertebrates. These data provide the first evidence on the involvement of specific brain regions underlying proactive and reactive coping in fishes, indicating that these nuclei have conserved functions during social defeat across taxa.
Mouth brooding is an extreme form of parental care in which the brooding parent carries the developing young in their buccal cavity for the duration of development. Brooding fish need to compensate for the brood weight on the anterior portion of their body. For fishes with a compartmentalized swim bladder, gas distribution between the chambers may aid in regulating buoyancy during brooding. To test this hypothesis, we took radiographs of to compare the swim bladder morphology of gravid, mouth-brooding and recovering females. Following spawning, females carry developing fish in their buccal cavity for ∼2 weeks, resulting in a larger and rounder anterior swim bladder compartment. Comparatively, the swim bladder of gravid females is long and cylindrical. Using small beads to mimic brood weight and its effects on female buoyancy, swim bladder changes were induced that resembled those observed during brooding. Immediately after releasing their fry, brooding females swim at a positive angle of attack but correct their swimming posture to normal within 5 min, suggesting a rapid change in swim bladder gas distribution. These data provide new insights into how swim bladder morphology and swimming behavior change during mouth brooding, and suggest a compartmentalized swim bladder may be a morphological adaptation for mouth brooding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.