SUMMARY The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX2CysX6CysX5-12CysX2CysX6-8Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Autophagy functions in antiviral immunity. However, it is not yet known whether endogenous autophagy genes protect against viral disease in vertebrates. Using three different approaches to inactivate the autophagy gene Atg5 in virally-infected neurons, we found that loss of Atg5 function increases mouse susceptibility to lethal Sindbis virus CNS infection. This phenotype is associated with delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but not with altered levels of CNS viral replication. In vitro, p62 interacts with Sindbis virus capsid protein and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a novel function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival.
The human pathogen Candida albicans is responsible for a large proportion of infections in immunocompromised individuals, and the emergence of drug-resistant strains is of medical concern. Resistance to antifungal azole compounds is often due to an increase in drug efflux or an alteration of the pathway for synthesis of ergosterol, an important plasma membrane component in fungi. However, little is known about the transcription factors that mediate drug resistance. In Saccharomyces cerevisiae, two highly related transcriptional activators, Upc2p and Ecm22p, positively regulate the expression of genes involved in ergosterol synthesis (ERG genes). We have identified a homologue in C. albicans of the S. cerevisiae UPC2/ECM22 genes and named it UPC2. Deletion of this gene impaired growth under anaerobic conditions and rendered cells highly susceptible to the antifungal drugs ketoconazole and fluconazole. Conversely, overexpression of Upc2p increased resistance to ketoconazole, fluconazole, and fluphenazine. Azole-induced expression of the ERG genes was abolished in a 鈱瑄pc2 strain, while basal levels of these mRNAs remained unchanged. Importantly, the purified DNA binding domain of Upc2p bound in vitro to putative sterol response elements in the ERG2 promoter, suggesting that Upc2p increases the expression of the ERG genes by directly binding to their promoters. These results provide an important link between changes in the ergosterol biosynthetic pathway and azole resistance in this opportunistic fungal species.
It is well-established that cartilage grows by a combination of matrix secretion, cell hypertrophy and cell proliferation. The extent to which this growth is by appositional, as opposed to interstitial mechanisms, however, remains unclear. Using the knee joints of the marsupial Monodelphis domestica to study cartilage growth, we have combined an immunohistochemical study of the TGF-beta family of cartilage growth and differentiation factors between 30 days postpartum to 8 months, together with a stereological analysis of cartilage morphology during growth. Furthermore, to gain an insight into the generation of the characteristic zones within cartilage, we have examined the effects of intra-articular administration of bromodeoxyuridine, an agent that is incorporated into DNA during cell division and blocks further cell cycling. During early growth, TGF-beta2 and -beta3 were widely expressed but TGF-beta1 was less so. After the formation of the secondary centre of ossification, all isoforms became more restricted to the upper half of the tissue depth and their distribution was similar to that previously described for IGFs, and PCNA-positive cells. Stereological analysis of tissue sections from the femoral condylar cartilage at 3 and 6 months showed that there was a 17% increase in total cartilage volume but a 31% decrease in cell density on a unit volume basis. Finally, cell-cycle perturbation with BrDU, which was injected into the knee joints of 3-month-old animals and analysed 1 and 4 months post-injection, revealed that the chondrocytes occupying the transitional zone were depleted 1 month post-injection, resulting in thinning of the articular cartilage. This effect was reversed 4 months post-injection. Immunohistochemical analysis revealed that BrDU-treatment altered the expression patterns of all TGF-beta isoforms, with a marked reduction in labelling of TGF-beta1 and -beta3 isoforms in the upper half of the cartilage depth. Overall, the data lends further support to the notion of articular cartilage growing by apposition from the articular surface rather than by interstitial mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.