Biological production of chemicals often requires the use of cellular cofactors, such as nicotinamide adenine dinucleotide phosphate (NADP + ). These cofactors are expensive to use in vitro and difficult to control in vivo. We demonstrate the development of a noncanonical redox cofactor system based on nicotinamide mononucleotide (NMN + ). The key enzyme in the system is a computationally designed glucose dehydrogenase with a 10 7 -fold cofactor specificity switch toward NMN + over NADP + based on apparent enzymatic activity. We demonstrate that this system can be used to support diverse redox chemistries in vitro with high total turnover number (~39,000), to channel reducing power in Escherichia coli whole cells specifically from glucose to a pharmaceutical intermediate, levodione, and to sustain the high metabolic flux required for the Reprints and permissions information is available at www.nature.com/reprints.
We report an aerobic, growth-based selection platform founded on NADP(H) redox balance restoration in Escherichia coli, and demonstrate its application in high-throughput evolution of oxygenase. A single round of selection enabled Pseudomonas aeruginoasa 4-hydroxybenzoate hydroxylase (PobA) to accept 3,4-dihydroxybenzoic acid efficiently, an essential step toward gallic acid biosynthesis. The best variant DA015 exhibited more than 5-fold higher catalytic efficiency compared to previously engineered enzymes. Structural modeling suggests precise reorganization of active site hydrogen bond network, which is difficult to obtain without deep navigation of combinatorial sequence space. We envision universal application of this selection platform in engineering NADPH-dependent oxidoreductases.
Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN+) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN+-based reducing power. This is based on an orthogonal, NMN+-dependent glycolytic pathway in Escherichia coli which can be coupled to any reciprocal enzyme to recycle the ensuing reduced NMN+. With a throughput of >106 variants per iteration, the growth selection discovers a Lactobacillus pentosus NADH oxidase variant with ~10-fold increase in NMNH catalytic efficiency and enhanced activity for other NCBs. Molecular modeling and experimental validation suggest that instead of directly contacting NCBs, the mutations optimize the enzyme’s global conformational dynamics to resemble the WT with the native cofactor bound. Restoring the enzyme’s access to catalytically competent conformation states via deep navigation of protein sequence space with high-throughput evolution provides a universal route to engineer NCB-dependent enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.