The impending realization of scalable quantum computers has led to active research in Post Quantum Cryptography (PQC). The challenge is harder for embedded IoT (edge) devices, due to their pervasive diffusion in today's world as well as their stricter resources (tight area and energy budgets). Amongst various classes of quantum-resistant cryptography schemes, Latticebased Cryptography (LBC) is emerging as one of the most viable, almost half of the 'survivors' of second round of the NIST's PQC competition are lattice-based in construction. This paper surveys the practicality of deployment of these schemes. In this context, the state-of-the-art LBC implementations on the constrained devices (including low-power FPGAs and embedded microprocessors), leading in terms of low-power footprint, small area, compact bandwidth requirements and high performance is fairly evaluated and bench-marked. The work concludes by identifying a suite of some favorite LBC schemes in terms of various IoT critical performance benchmarks .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.