Analyses of gray matter concentration (GMC) deficits in patients with schizophrenia (Sz) have identified robust changes throughout the cortex. We assessed the relationships between diagnosis, overall symptom severity, and patterns of gray matter in the largest aggregated structural imaging dataset to date. We performed both source-based morphometry (SBM) and voxel-based morphometry (VBM) analyses on GMC images from 784 Sz and 936 controls (Ct) across 23 scanning sites in Europe and the United States. After correcting for age, gender, site, and diagnosis by site interactions, SBM analyses showed 9 patterns of diagnostic differences. They comprised separate cortical, subcortical, and cerebellar regions. Seven patterns showed greater GMC in Ct than Sz, while 2 (brainstem and cerebellum) showed greater GMC for Sz. The greatest GMC deficit was in a single pattern comprising regions in the superior temporal gyrus, inferior frontal gyrus, and medial frontal cortex, which replicated over analyses of data subsets. VBM analyses identified overall cortical GMC loss and one small cluster of increased GMC in Sz, which overlapped with the SBM brainstem component. We found no significant association between the component loadings and symptom severity in either analysis. This mega-analysis confirms that the commonly found GMC loss in Sz in the anterior temporal lobe, insula, and medial frontal lobe form a single, consistent spatial pattern even in such a diverse dataset. The separation of GMC loss into robust, repeatable spatial patterns across multiple datasets paves the way for the application of these methods to identify subtle genetic and clinical cohort effects.
These results are consistent with the view that neuroanatomical markers of schizophrenia may help to explain some of the heterogeneity of this disorder, particularly with respect to early vs later age of onset of psychosis, with younger and older individuals having differing intercepts and trajectories in structural brain parameters as a function of age. The results also suggest that baseline neuroanatomical measures are likely to be useful in estimating onset of psychosis, especially (or only) among CHR individuals with an earlier age of onset of prodromal symptoms.
Multi-site longitudinal neuroimaging designs are used to identify differential brain structural change associated with onset or progression of disease. The reliability of neuroanatomical measurements over time and across sites is a crucial aspect of power in such studies. Prior work has found that while within-site reliabilities of neuroanatomical measurements are excellent, between-site reliability is generally more modest. Factors that may increase between-site reliability include standardization of scanner platform and sequence parameters and correction for between-scanner variations in gradient nonlinearities. Factors that may improve both between- and within-site reliability include use of registration algorithms that account for individual differences in cortical patterning and shape. In this study 8 healthy volunteers were scanned twice on successive days at 8 sites participating in the North American Prodrome Longitudinal Study (NAPLS). All sites employed 3 Tesla scanners and standardized acquisition parameters. Site accounted for 2 to 30% of the total variance in neuroanatomical measurements. However, site-related variations were trivial (<1%) among sites using the same scanner model and 12-channel coil or when correcting for between-scanner differences in gradient nonlinearity and scaling. Adjusting for individual differences in sulcal-gyral geometries yielded measurements with greater reliabilities than those obtained using an automated approach. Neuroimaging can be performed across multiple sites at the same level of reliability as at a single site, achieving within- and between-site reliabilities of 0.95 or greater for gray matter density in the majority of voxels in the prefrontal and temporal cortical surfaces as well as for the volumes of most subcortical structures.
In a recent machine learning study classifying “brain age” based on cross-sectional neuroanatomical data, clinical high-risk (CHR) individuals were observed to show deviation from the normal neuromaturational pattern, which in turn was predictive of greater risk of conversion to psychosis and a pattern of stably poor functional outcome. These effects were unique to cases who were between 12 and 17 years of age when their prodromal and psychotic symptoms began, suggesting that neuroanatomical deviance observable at the point of ascertainment of a CHR syndrome marks risk for an early onset form of psychosis. In the present study, we sought to clarify the pattern of neuroanatomical deviance linked to this “early onset” form of psychosis and whether this deviance is associated with poorer premorbid functioning. T 1 MRI scans from 378 CHR individuals and 190 healthy controls (HC) from the North American Prodrome Longitudinal Study (NAPLS2) were analyzed. Widespread smaller cortical volume was observed among CHR individuals compared with HC at baseline evaluation, particularly among the younger group (i.e., those who were 12 to 17 years of age). Moreover, the younger CHR individuals who converted or presented worsened clinical symptoms at follow-up (within 2 years) exhibited smaller surface area in rostral anterior cingulate, lateral and medial prefrontal regions, and parahippocampal gyrus relative to the younger CHR individuals who remitted or presented a stable pattern of prodromal symptoms at follow-up. In turn, poorer premorbid functioning in childhood was associated with smaller surface area in medial orbitofrontal, lateral frontal, rostral anterior cingulate, precuneus, and temporal regions. Together with our prior report, these results are consistent with the view that neuroanatomical deviance manifesting in early adolescence marks vulnerability to a form of psychosis presenting with poor premorbid adjustment, an earlier age of onset (generally prior to the age of 18 years), and poor long-term outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.