To evaluate the quality of available evidence on the effects of environmental noise exposure on sleep a systematic review was conducted. The databases PSYCINFO, PubMed, Science Direct, Scopus, Web of Science and the TNO Repository were searched for non-laboratory studies on the effects of environmental noise on sleep with measured or predicted noise levels and published in or after the year 2000. The quality of the evidence was assessed using GRADE criteria. Seventy four studies predominately conducted between 2000 and 2015 were included in the review. A meta-analysis of surveys linking road, rail, and aircraft noise exposure to self-reports of sleep disturbance was conducted. The odds ratio for the percent highly sleep disturbed for a 10 dB increase in Lnight was significant for aircraft (1.94; 95% CI 1.61–2.3), road (2.13; 95% CI 1.82–2.48), and rail (3.06; 95% CI 2.38–3.93) noise when the question referred to noise, but non-significant for aircraft (1.17; 95% CI 0.54–2.53), road (1.09; 95% CI 0.94–1.27), and rail (1.27; 95% CI 0.89–1.81) noise when the question did not refer to noise. A pooled analysis of polysomnographic studies on the acute effects of transportation noise on sleep was also conducted and the unadjusted odds ratio for the probability of awakening for a 10 dBA increase in the indoor Lmax was significant for aircraft (1.35; 95% CI 1.22–1.50), road (1.36; 95% CI 1.19–1.55), and rail (1.35; 95% CI 1.21–1.52) noise. Due to a limited number of studies and the use of different outcome measures, a narrative review only was conducted for motility, cardiac and blood pressure outcomes, and for children’s sleep. The effect of wind turbine and hospital noise on sleep was also assessed. Based on the available evidence, transportation noise affects objectively measured sleep physiology and subjectively assessed sleep disturbance in adults. For other outcome measures and noise sources the examined evidence was conflicting or only emerging. According to GRADE criteria, the quality of the evidence was moderate for cortical awakenings and self-reported sleep disturbance (for questions that referred to noise) induced by traffic noise, low for motility measures of traffic noise induced sleep disturbance, and very low for all other noise sources and investigated sleep outcomes.
Background Sustained high-level cognitive performance is of paramount importance for the success of space missions, which involve environmental, physiological and psychological stressors that may affect brain functions. Despite subjective symptom reports of cognitive fluctuations in spaceflight, the nature of neurobehavioral functioning in space has not been clarified. Methods We developed a computerized cognitive test battery (Cognition) that has sensitivity to multiple cognitive domains and was specifically designed for the high-performing astronaut population. Cognition consists of 15 unique forms of 10 neuropsychological tests that cover a range of cognitive domains including emotion processing, spatial orientation, and risk decision making. Cognition is based on tests known to engage specific brain regions as evidenced by functional neuroimaging. Here we describe the first normative and acute total sleep deprivation data on the Cognition test battery as well as several efforts underway to establish the validity, sensitivity, feasibility, and acceptability of Cognition. Results Practice effects and test-retest variability differed substantially between the 10 Cognition tests, illustrating the importance of normative data that both reflect practice effects and differences in stimulus set difficulty in the population of interest. After one night without sleep, medium to large effect sizes were observed for 3 of the 10 tests addressing vigilant attention (Cohen’s d=1.00), cognitive throughput (d=0.68), and abstract reasoning (d=0.65). Conclusions In addition to providing neuroimaging-based novel information on the effects of spaceflight on a range of cognitive functions, Cognition will facilitate comparing the effects of ground-based analogs to spaceflight, increase consistency across projects, and thus enable meta-analyses.
Purpose: This study assessed the dosimetric accuracy of synthetic CT images generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy, using a deep learning approach. Material and Methods:We conducted a study in 77 patients with brain tumors who had undergone both MRI and computed tomography (CT) imaging as part of their simulation for external beam treatment planning. We designed a generative adversarial network (GAN) to generate synthetic CT images from MRI images. We used Mutual Information (MI) as the loss function in the generator to overcome the misalignment between MRI and CT images (unregistered data). The model was trained using all MRI slices with corresponding CT slices from each training subject's MRI/CT pair. Results:The proposed GAN method produced an average mean absolute error (MAE) of 47.2 ±11.0 HU over 5-fold cross validation. The overall mean Dice similarity coefficient between CT and synthetic CT images was 80% ± 6% in bone for all test data. Though training a GAN model may take several hours, the model only needs to be trained once. Generating a complete synthetic CT volume for each new patient MRI volume using a trained GAN model took only one second. Conclusions:The GAN model we developed produced highly accurate synthetic CT images from conventional, single-sequence MRI images in seconds. Our proposed method has strong potential to perform well in a clinical workflow for MRI-only brain treatment planning.
Inter-and intra-observer variation in delineating regions of interest (ROIs) occurs because of differences in expertise level and preferences of the radiation oncologists. We evaluated the accuracy of a segmentation model using the U-Net structure to delineate the prostate, bladder, and rectum in male pelvic CT images. The dataset used for training and testing the model consisted of raw CT scan images of 85 prostate cancer patients. We designed a 2D U-Net model to directly learn a mapping function that converts a 2D CT grayscale image to its corresponding 2D OAR segmented image. Our network contains blocks of convolution 2D layers with variable kernel sizes, channel number, and activation functions. On the left side of the U-Net model, we used three 3x3 convolutions, each followed by a rectified linear unit (ReLu) (activation function), and one max pooling operation. On the right side of the U-Net model, we used a 2x2 transposed convolution and two 3x3 convolution networks followed by a ReLu activation function. The automatic segmentation using the U-Net generated an average dice similarity coefficient (DC) and standard deviation (SD) of the following: DC ± SD (0.88 ± 0.12), (0.95 ± 0.04), and (0.92 ± 0.06) for the prostate, bladder, and rectum, respectively. Furthermore, the mean of average surface Hausdorff distance (ASHD) and SD were 1.2 ± 0.9 mm, 1.08 ± 0.8 mm, and 0.8 ± 0.6 mm for the prostate, bladder, and rectum, respectively. Our proposed method, which employs the U-Net structure, is highly accurate and reproducible for automated ROI segmentation. This provides a foundation to improve automatic delineation of the boundaries between the target and surrounding normal soft tissues on a standard radiation therapy planning CT scan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.