All normal somatic cells are thought to acquire mutations. However, characterisation of the patterns and consequences of somatic mutation in normal tissues is limited. Uterine endometrium is a dynamic tissue that undergoes cyclical shedding and reconstitution and is lined by a gland-forming epithelium. Whole genome sequencing of normal endometrial glands showed that most are clonal cell populations derived from a recent common ancestor with mutation burdens differing from other normal cell types and manyfold lower than endometrial cancers. Mutational signatures found ubiquitously account for most mutations.Many, in some women potentially all, endometrial glands are colonised by cell clones carrying driver mutations in cancer genes, often with multiple drivers. Total and driver mutation burdens increase with age but are also influenced by other factors including body mass index and parity. Clones with drivers often originate during early decades of life. The somatic mutational landscapes of normal cells differ between cell types and are revealing the procession of neoplastic change leading to cancer.
To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis.
All normal somatic cells are thought to acquire mutations. However, characterisation of the patterns and consequences of somatic mutation in normal tissues is limited. Uterine endometrium is a dynamic tissue that undergoes cyclical shedding and reconstitution and is lined by a gland-forming epithelium. Whole genome sequencing of normal endometrial glands showed that most are clonal cell populations derived from a recent common ancestor with mutation burdens differing from other normal cell types and manyfold lower than endometrial cancers. Mutational signatures found ubiquitously account for most mutations. Many, in some women potentially all, endometrial glands are colonised by cell clones carrying driver mutations in cancer genes, often with multiple drivers. Total and driver mutation burdens increase with age but are also influenced by other factors including body mass index and parity. Clones with drivers often originate during early decades of life. The somatic mutational landscapes of normal cells differ between cell types and are revealing the procession of neoplastic change leading to cancer.
doi: medRxiv preprint NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.