Novel Corona virus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or 2019-nCoV), and the subsequent disease caused by the virus (coronavirus disease 2019 or COVID-19), is an emerging global health concern that requires a rapid diagnostic test. Quantitative reverse transcription PCR (qRT-PCR) is currently the standard for SARS-CoV-2 detection; however, Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) may allow for faster and cheaper field based testing at point-of-risk. The objective of this study was to develop a rapid screening diagnostic test that could be completed in 30-45 minutes. Simulated patient samples were generated by spiking serum, urine, saliva, oropharyngeal swabs, and nasopharyngeal swabs with a portion of the SARS-CoV-2 nucleic sequence. RNA isolated from nasopharyngeal swabs collected from actual COVID-19 patients was also tested. The samples were tested using RT-LAMP as well as by conventional qRT-PCR. Specificity of the RT-LAMP was evaluated by also testing against other related coronaviruses. RT-LAMP specifically detected SARS-CoV-2 in both simulated patient samples and clinical specimens. This test was performed in 30-45 minutes. This approach could be used for monitoring of exposed individuals or potentially aid with screening efforts in the field and potential ports of entry.
Background-The ubiquitin proteasome system maintains a dynamic equilibrium of proteins and prevents accumulation of damaged and misfolded proteins, yet its role in human cardiac dysfunction is not well understood. The present study evaluated ubiquitin proteasome system function in human heart failure and hypertrophic cardiomyopathy (HCM). Methods and Results-Proteasome function was studied in human nonfailing donor hearts, explanted failing hearts, and myectomy samples from patients with HCM. Proteasome proteolytic activities were markedly reduced in failing and HCM hearts compared with nonfailing hearts (PϽ0.01). This activity was partially restored after mechanical unloading in failing hearts (PϽ0.01) and was significantly lower in HCM hearts with pathogenic sarcomere mutations than in those lacking these mutations (PϽ0.05). There were no changes in the protein content of ubiquitin proteasome system subunits (ie, 11S, 20S, and 19S) or in active-site labeling of the 20S proteolytic subunit -5 among groups to explain decreased ubiquitin proteasome system activity in HCM and failing hearts. Examination of protein oxidation revealed that total protein carbonyls, 4-hydroxynonenylated proteins, and oxidative modification to 19S ATPase subunit Rpt 5 were increased in failing compared with nonfailing hearts. Conclusions-Proteasome activity in HCM and failing human hearts is impaired in the absence of changes in proteasome protein content or availability of proteolytic active sites. These data provide strong evidence that posttranslational modifications to the proteasome may account for defective protein degradation in human cardiomyopathies. Key Words: apoptosis Ⅲ cardiomyopathy Ⅲ heart failure Ⅲ hypertrophy Ⅲ myocardium Ⅲ proteins P roteolytic degradation is critical for maintaining a dynamic equilibrium of proteins and destroying damaged or misfolded proteins. As the major pathway for intracellular protein degradation, the ubiquitin proteasome system (UPS) requires precise control to sustain most biological processes. Regulation of proteasome function may occur by altered proteasome composition (ie, association of the 20S proteolytic core with different regulatory complexes such as the 19S or 11S) 1,2 or by posttranslational modifications (ie, phosphorylation, oxidation) that affect proteasome assembly, stability, and activity. [3][4][5][6] Proteasome regulation thus has the potential to provide highly dynamic responses to cellular signals and stresses. Clinical Perspective on p 1004Despite recognition that UPS function is dysregulated in many diseases, 7-11 the importance of UPS function in cardiac diseases is only beginning to gain attention. Desmin-related cardiomyopathy mouse models provide compelling data for UPS dysfunction, in which cardiomyocyte accumulation of protein aggregates is postulated to inhibit proteasome function by restricting entry of ubiquitinated proteins into the proteasome. 12,13 Another notable example is acute cardiac ischemia, in which proteasome inhibition is thought to occur as a resul...
Background Heterozygous mutations in sarcomere genes in hypertrophic cardiomyopathy (HCM) are proposed to exert their effect through gain-of-function for missense mutations or loss-of-function for truncating mutations. However, allelic expression from individual mutations has not been sufficiently characterized to support this exclusive distinction in human HCM. Methods and Results Sarcomere transcript and protein levels were analyzed in septal myectomy and transplant specimens from 46 genotyped HCM patients with or without sarcomere gene mutations and 10 control hearts. For truncating mutations in MYBPC3, the average ratio of mutant:wild-type transcripts was ~1:5, in contrast to ~1:1 for all sarcomere missense mutations, confirming that nonsense transcripts are uniquely unstable. However, total MYBPC3 mRNA was significantly increased by ~9 fold in HCM samples with MYBPC3 mutations compared to control hearts and to HCM samples without sarcomere gene mutations. Full-length MYBPC3 protein content was not different between MYBPC3 mutant HCM and control samples and no truncated proteins were detected. By absolute quantification of abundance (AQUA) with multiple reaction monitoring, stoichiometric ratios of mutant sarcomere proteins relative to wild-type were strikingly variable in a mutation-specific manner, with the fraction of mutant protein ranging from 30–84%. Conclusions These results challenge the concept that haploinsufficiency is a unifying mechanism for HCM caused by MYBPC3 truncating mutations. The range of allelic imbalance for several missense sarcomere mutations suggests that certain mutant proteins may be more or less stable, or incorporate more or less efficiently into the sarcomere than wild-type proteins. These mutation-specific properties may distinctly influence disease phenotypes.
Novel Corona virus (COVID-19 or 2019-nCoV) is an emerging global health concern that requires a rapid diagnostic test. Quantitative reverse transcription PCR (qRT-PCR) is currently the standard for COVID-19 detection; however, Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) may allow for faster and cheaper field based testing at point-of-risk. The objective of this study was to develop a rapid screening diagnostic test that could be completed in under 30 minutes. Simulated patient samples were generated by spiking serum, urine, saliva, oropharyngeal swabs, and nasopharyngeal swabs with a portion of the COVID-19 nucleic sequence. The samples were tested using RT-LAMP as well as by conventional qRT-PCR. Specificity of the RT-LAMP was evaluated by also testing against other related coronaviruses. RT-LAMP specifically detected COVID-19 in simulated patient samples.This test was performed in under 30 minutes. This approach could be used for monitoring of exposed individuals or potentially aid with screening efforts in the field and potential ports of entry.All rights reserved. No reuse allowed without permission. author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.