Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio-and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after headonly irradiation. Cortical-and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment.radiation-induced cognitive dysfunction | microvesicles | dendritic complexity | human neural stem cells | neuroinflammation W ith improved diagnosis and treatment, cancer survivorship continues to rise but often at the cost of quality of life. The unintended neurocognitive sequelae resulting from cranial irradiation used to treat primary and secondary malignancies of the brain are both progressive and debilitating (1, 2). Despite the recognition and prevalence of these adverse side effects, relatively few, if any, long-term satisfactory solutions exist for this unmet medical need. Past work from our laboratory has optimized transplantation parameters and established many of the long-term benefits of human stem cell-based therapies for the treatment of radiationinduced cognitive dysfunction (3-5). Cranially grafted stem cells have been shown to impart persistent improvements in behavioral performance in irradiated rats over extended postirradiation intervals (1-8 mo) using short-and long-term cognitive testing paradigms (4, 6, 7). These studies have shown that our stem cell-based approaches improve the functional plasticity of the host brain through a variety of mechanisms including (i) the suppression of neuroinflammation (5), (ii) the addition of new cells to active hippocampal circuits (4), and (iii) a long-term trophic support mechanism that facilitates the expression of activity-regulated cytoskeletonassociated protein that functions in multiple ways as a molecular determinant of memory (7). Moreover, using a distinctly different injury paradigm, stem cell grafting pres...
Cranial irradiation used to control CNS malignancies can also disrupt the vasculature and impair neurotransmission and cognition. Here we describe two distinct methodologies for quantifying early and late radiation injury in CNS microvasculature. Intravascular fluorescently labeled lectin was used to visualize microvessels in the brain of the irradiated mouse two days post exposure and RECA-1 immunostaining was similarly used to visualize microvessels in the brain of the irradiated rat one month post exposure. Confocal microscopy, image deconvolution and 3-dimensional rendering methods were used to define vascular structure in a ~4×107 µm3 defined region of the brain. Quantitative analysis of these 3D images revealed that irradiation caused significant short- and long-term reductions in capillary density, diameter and volume. In mice, irradiation reduced mean vessel volume from 2,250 to 1,470 µm3 and mean vessel diameter from 5.0 to 4.5 µm, resulting in significant reductions of 34% and 10% respectively. The number of vessel branch points and area was also found to also drop significantly in mice 2 days after irradiation. For rats, immunostaining revealed a significant, 3-fold drop in capillary density 1 month after exposure compared to controls. Such radiation-induced disruption of the CNS microvasculature may be contributory if not causal to any number of neurocognitive side effects that manifest in cancer patients following cranial radiotherapy. This study demonstrates the utility of two distinct methodologies for quantifying these important adverse effects of radiotherapy.
The normal C1 and C2 ossification centers may appear to be malaligned due to normal offsetting (lateral displacement) of C1 on C2. An understanding of the normal development of the cervical spine is important in assessing spinal anatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.