The plantarflexor muscles are critical for forward propulsion and leg swing initiation during the push-off phase of walking, serving to modulate step length and walking speed. However, reduced ankle power output is common in aging and gait pathology, and is considered a root biomechanical cause of compensatory increases in hip power generation and increased metabolic energy cost. There is a critical need for mechanistic insight into the precise influence of ankle power output on patterns of mechanical power generation at the individual joint and limb levels during walking. We also posit that rehabilitative approaches to improve locomotor patterns should consider more direct means to elicit favorable changes in ankle power output. Thus, here we used real-time inverse dynamics in a visual biofeedback paradigm to test young adults' ability to modulate ankle power output during preferred speed treadmill walking, and the effects thereof on gait kinematics and kinetics. Subjects successfully modulated peak ankle power in response to biofeedback targets designed to elicit up to ±20% of normal walking values. Increasing ankle power output alleviated mechanical power demands at the hip and increased trailing limb positive work, propulsive ground reaction forces and step lengths. Decreasing ankle power had the opposite effects. We conclude that ankle power generation systematically influences the workload placed on more proximal leg muscles, trailing leg mechanical output and step length. Our findings also provide a promising benchmark for the application of biofeedback to restore ankle power in individuals with deficits thereof due to aging and gait pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.