Motor learning depends upon plasticity in neural networks involved in the planning and execution of movement. Physical practice (PP) is the primary means of motor learning, but it can be augmented with nonphysical forms of practice including motor imagery (MI)-the mental rehearsal of movement. It is unknown if MI alone, without prior PP of a movement, can produce robust learning. Here the authors used an implicit sequence learning task to explore motor learning via MI alone or PP. Participants underwent implicit sequence learning training via MI (n = 31) or PP (n = 33). Posttraining reaction time was faster for implicit versus random sequences for both the MI group (M = 583 ± 84 ms; 632 ± 86 ms, d = 0.59) and PP group (M = 532 ± 73 ms; 589 ± 70 ms, d = 0.80), demonstrating that MI without PP facilitated skill acquisition. Relative to MI alone, PP led to reduced reaction time for both random (d = 0.65) and implicit sequences (d = 0.55) consistent with a nonspecific motor benefit favoring PP over MI. These results have broad implication for theories of MI and support the use of MI as a form of practice to acquire implicit motor skills. (PsycINFO Database Record
White matter hyperintensities negatively impact white matter structure and relate to cognitive decline in aging. Diffusion tensor imaging detects changes to white matter microstructure, both within the white matter hyperintensity and extending into surrounding (perilesional) normal appearing white matter. However, diffusion tensor imaging markers are not specific to tissue components, complicating interpretation of previous microstructural findings. Myelin water imaging is a novel imaging technique that provides specific markers of myelin content (myelin water fraction) and interstitial fluid (geometric mean T2). Here we combined diffusion tensor imaging and myelin water imaging to examine tissue characteristics in white matter hyperintensities and perilesional white matter in 80 individuals (47 older adults and 33 individuals with chronic stroke). To measure perilesional normal appearing white matter, white matter hyperintensity masks were dilated in 2 mm segments up to 10 mm in distance from the white matter hyperintensity. Fractional anisotropy, mean diffusivity, myelin water fraction, and geometric mean T2 were extracted from white matter hyperintensities and perilesional white matter. We observed a spatial gradient of higher mean diffusivity and geometric mean T2, and lower fractional anisotropy, in the white matter hyperintensity and perilesional white matter. In the chronic stroke group, myelin water fraction was reduced in the white matter hyperintensity but did not show a spatial gradient in perilesional white matter. Across the entire sample, white matter metrics within the white matter hyperintensity related to whole-brain white matter hyperintensity volume; with increasing white matter hyperintensity volume there was increased mean diffusivity and geometric mean T2, and decreased myelin water fraction in the white matter hyperintensity. Normal appearing white matter adjacent to white matter hyperintensities exhibits characteristics of a transitional stage between healthy white matter and white matter hyperintensities. This effect was observed in markers sensitive to interstitial fluid, but not in myelin water fraction, the specific marker of myelin concentration. Within the white matter hyperintensity, interstitial fluid was higher and myelin concentration was lower in individuals with more severe cerebrovascular disease. Our data suggests white matter hyperintensities have penumbra-like characteristics in perilesional white matter that specifically reflect increased interstitial fluid, with no changes to myelin concentration. In contrast, within the white matter hyperintensity there are varying levels of demyelination, which vary based on the severity of cerebrovascular disease. Diffusion tensor imaging and myelin imaging may be useful clinical markers to predict white matter hyperintensity formation, and to stage neuronal damage within white matter hyperintensities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.