Despite the fundamental role of centromeres two different types are observed across plants and animals. Monocentric chromosomes possess a single region that function as the centromere while in holocentric chromosomes centromere activity is spread across the entire chromosome. Proper segregation may fail in species with monocentric chromosomes after a fusion or fission, which may lead to chromosomes with no centromere or multiple centromeres. In contrast, species with holocentric chromosomes should still be able to safely segregate chromosomes after fusion or fission. This along with the observation of high chromosome number in some holocentric clades has led to the hypothesis that holocentricity leads to higher rates of chromosome number evolution. To test for differences in rates of chromosome number evolution between these systems, we analyzed data from 4,393 species of insects in a phylogenetic framework. We found that insect orders exhibit striking differences in rates of fissions, fusions, and polyploidy. However, across all insects we found no evidence that holocentric clades have higher rates of fissions, fusions, or polyploidy than monocentric clades. Our results suggest that holocentricity alone does not lead to higher rates of chromosome number changes. Instead, we suggest that other co-evolving traits must explain striking differences between clades.
The genetic underpinnings of traits are rarely simple. Most traits of interest are instead the product of multiple genes acting in concert to determine the phenotype. This is particularly true for behavioral traits, like dispersal. Our investigation focuses on the genetic architecture of dispersal tendency in the red flour beetle, Tribolium castaneum. We used artificial selection to generate lines with either high or low dispersal tendency. Our populations responded quickly in the first generations of selection and almost all replicates had higher dispersal tendency in males than in females. These selection lines were used to create a total of six additional lines: F1 and reciprocal F1, as well as four types of backcrosses. We estimated the composite genetic effects that contribute to divergence in dispersal tendency among lines using line cross analysis. We found variation in dispersal tendency of our lines was best explained by autosomal additive and three epistatic components. Our results indicate that dispersal tendency is heritable, but much of the divergence in our selection lines was due to epistatic effects. These results are consistent with other life history traits that are predicted to maintain more epistatic variance than additive variance and highlight the potential for epistatic variation to act as an adaptive reserve that may become visible to selection when a population is subdivided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.