Lithium-coordinated polyaromatic anions such as tetrareduced corannulene, C(20)H(10)(4-) (1(4-)), are useful substrates to model and ultimately improve the graphitic electrodes in lithium-ion (Li(+)) batteries. Previous studies suggested that 1(4-) forms dimers encasing four Li(+) ions in solution. Here, we report a single-crystal x-ray diffraction analysis confirming the formation of a sandwich-type supramolecular aggregate with a high degree of alkali metal intercalation. In contrast to the prior model, our data reveal that five Li(+) ions are sandwiched between the two tetrareduced corannulene decks, and (7)Li nuclear magnetic resonance spectroscopy delineates a conserved structure in tetrahydrofuran solution. Remarkably, the sandwich is robust in both solution and solid states even in the presence of crown ethers that compete for Li(+) coordination. These results should help elucidate Li(+) intercalation motifs between curved carbon surfaces more broadly.
Lots of potential: a trifluoromethylated corannulene, C(5)-C(20)H(5)(CF(3))(5), has been prepared and characterized spectroscopically and by X-ray crystallography. The structure exhibits a highly ordered bowl stacking that is unusual for corannulenes with acyclic substituents. The first reduction of C(5)-C(20)H(5)(CF(3))(5) is anodically shifted by 0.95 V, making it the strongest corannulene-based electron acceptor to date.
Bowl-shaped mono- and dianions are prepared by reduction of corannulene (C(20)H(10), 1) with sodium and potassium metals in the presence of [18]crown-6 ether. Single-crystal X-ray diffraction studies of two sodium salts, [Na(THF)(2)([18]crown-6)](+)[1(-)] (2a) and [Na([18]crown-6)](+)[1(-)] (2b), reveal the presence of naked corannulene monoanions 1(-) in both cases. In contrast, the potassium adduct, [K([18]crown-6)](+)[1(-)] (3), shows an η(2)-binding of the K(+) ion to the convex face of 1(-). For the first time, corannulene dianions have been isolated as salts with sodium, [Na(2)([18]crown-6)](2+)[1(2-)] (4a) and [Na(THF)(2)([18]crown-6)](+)[Na([18]crown-6)](+)[1(2-)] (4b), and potassium counterions, [K([18]crown-6)](2)(+)[1(2-)] (5). Their structural characterization reveals geometry perturbations upon addition of two electrons to a bowl-shaped polyarene. It also demonstrates η(5)- or η(6)-binding of metals to the curved carbon surface of 1(2-), depending on the crystallization conditions. Both mono- and doubly-charged corannulene bowls show the preferential exo binding of Na(+) and K(+) ions in all investigated compounds. Various types of C-H···π interactions are found in the crystals of 2-5. The UV/Vis, ESR, and (1)H NMR spectroscopic studies of 2-5 indicate different coordination environment of corannulene anions in solution, depending on the metal ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.