Transmission-blocking strategies that slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect against coronavirus disease 2019 (COVID-19) are needed. We have developed an orally-delivered Adenovirus type (Ad) 5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here we demonstrated that hamsters vaccinated by the oral or intranasal route had robust and cross-reactive antibody responses. We then induced a post-vaccination infection by inoculating vaccinated hamsters with SARS-CoV-2. Oral- or intranasal-vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters after SARS-CoV-2 challenge. Naïve hamsters exposed in a unidirectional air flow chamber to mucosally-vaccinated, SARS-CoV-2-infected hamsters also had lower nasal swab viral RNA and exhibited fewer clinical symptoms than control animals, suggesting that the mucosal-route reduced viral transmission. The same platform encoding the SARS-CoV-2 spike and nucleocapsid proteins elicited mucosal cross-reactive SARS-CoV-2-specific IgA responses in a phase 1 clinical trial (NCT04563702). Our data demonstrate that mucosal immunization is a viable strategy to decrease SARS-CoV-2 disease and airborne transmission.
Vaccines that are shelf stable and easy to administer are crucial to improve vaccine access and reduce SARS-CoV-2 transmission around the world. Here we demonstrate that an oral, adenovirus-based vaccine candidate protects against SARS-CoV-2 in a Syrian hamster challenge model. Hamsters administered two doses of VXA-CoV2-1 showed a reduction in weight loss and lung pathology and had completely eliminated infectious virus 5 days post challenge. Oral immunization induced anti-spike IgG and neutralizing antibodies were induced upon oral immunization with the sera demonstrating neutralizing activity. Overall this data demonstrates the ability of oral vaccine candidate VXA-CoV2-1 to provide protection against SARS-CoV-2 disease.
The emergence of SARS-CoV-2 variants continues to be a major obstacle for controlling the global pandemic. Despite the currently authorized SARS-CoV-2 vaccines ability to reduce severe disease and hospitalization, new immunization strategies are needed that enhance mucosal immune responses, inhibit community transmission, and provide protection against emerging variants. We have developed a mucosally delivered, non-replicating recombinant adenovirus vector (rAd5) vaccine, that has proven efficacy in the clinic against other respiratory viruses [1]. Here we evaluated the immunogenicity of three candidate SARS-CoV-2 vaccines in cynomolgus macaques that contained spike (S) and/or nucleocapsid (N) from either the Wuhan or the beta variant to select a candidate for future clinical development. Mucosal immunization with the Wuhan specific S vaccine (ED90) induced significant cross-reactive serum IgG responses against to Wuhan, beta, gamma and delta lineages, and generated substantial serum neutralizing activity. In nasal samples, ED90 immunization induced 1000-fold increases in IgA to all variants of concern tested and had neutralizing activity against Wuhan and delta. While immunization with the beta specific vaccine (ED94) enhanced IgG and IgA responses to homologous beta variant S and RBD, this approach resulted in less cross-reactive responses to other variants in the serum and nasal passages compared to ED90. As ED90 immunization induced the most robust cross-reactive systemic and mucosal antibody responses, this candidate was chosen for future clinical development.
Transmission-blocking strategies that slow the spread of SARS-CoV-2 and protect against COVID-19 are needed. We have developed a shelf-stable, orally-delivered Ad5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here we demonstrated that oral and intranasal SARS-CoV-2 vaccination of this candidate protected against disease in index hamsters, and decreased aerosol transmission to unvaccinated, naive hamsters. We confirmed that mucosally-vaccinated hamsters had robust antibody responses. We then induced a post-vaccination infection by inoculating vaccinated index hamsters with SARS-CoV-2. Oral and IN-vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters post challenge. Naive hamsters exposed in a unidirectional air flow chamber to mucosally-vaccinated, SARS-CoV-2-infected hamsters had lower nasal swab viral RNA and exhibited less clinical symptoms of disease than control animals. Our data demonstrate that oral immunization is a viable strategy to decrease SARS-CoV-2 disease and aerosol transmission.
As new SARS-CoV-2 variants continue to emerge and impact communities worldwide, efforts to develop next generation vaccines that enhance mucosal immunity would be beneficial for protecting individuals and reducing community transmission. We have developed a non-replicating recombinant adenovirus vector (rAd5) vaccine delivered by mucosal administration engineered to express both a protein antigen and a novel molecular adjuvant in the same cell. Here we describe the immunogenicity of three unique SARS-CoV-2 rAd5 vaccine preclinical candidates and their efficacy following viral challenge in African green monkeys. Animals were prime and boost immunized intranasally twenty-nine days apart with rAd5 vaccine candidates containing viral SARS-CoV-2 spike protein alone or in combination with viral nucleocapsid. Mucosal immunization elicited significant increases in antigen-specific serum antibody responses and functional neutralizing activity against multiple variants of concern. Robust antigen specific mucosal IgA responses were observed after a single administration of rAd5 and generated strong cross-reactive neutralizing antibodies against multiple variants including delta. Importantly, all vaccinated animals exhibited a significant reduction in viral loads and infectious particle shedding in both the nasal passages and lower airways compared to unvaccinated controls following challenge with SARS-CoV-2. These findings demonstrate that mucosal immunization using rAd5 is highly immunogenic, confers protective cross-reactive humoral responses in both the circulation and mucosa, and reduces viral loads and shedding upon challenge with multiple SARS-CoV-2 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.