Background: Poxviruses contain several virulence factors with no identifiable cellular homologues.Results: Vaccinia virus immunomodulatory protein A49 adopts the same fold as cellular and viral Bcl-2 family proteins but does not share their function.Conclusion: Vaccinia virus Bcl-2-like proteins resemble each other structurally but have divergent functions.Significance: Viruses hijack protein scaffolds and evolve them to subvert host-cell immunity.
Vaccinia virus protein A49 inhibits NF-κB activation by molecular mimicry and has a motif near the N terminus that is conserved in IκBα, β-catenin, HIV Vpu, and some other proteins. This motif contains two serines, and for IκBα and β-catenin, phosphorylation of these serines enables recognition by the E3 ubiquitin ligase β-TrCP. Binding of IκBα and β-catenin by β-TrCP causes their ubiquitylation and thereafter proteasome-mediated degradation. In contrast, HIV Vpu and VACV A49 are not degraded. This paper shows that A49 is phosphorylated at serine 7 but not serine 12 and that this is necessary and sufficient for binding β-TrCP and antagonism of NF-κB. Phosphorylation of A49 S7 occurs when NF-κB signaling is activated by addition of IL-1β or overexpression of TRAF6 or IKKβ, the kinase needed for IκBα phosphorylation. Thus, A49 shows beautiful biological regulation, for it becomes an NF-κB antagonist upon activation of NF-κB signaling. The virulence of viruses expressing mutant A49 proteins or lacking A49 (vΔA49) was tested. vΔA49 was attenuated compared with WT, but viruses expressing A49 that cannot bind β-TrCP or bind β-TrCP constitutively had intermediate virulence. So A49 promotes virulence by inhibiting NF-κB activation and by another mechanism independent of S7 phosphorylation and NF-κB antagonism. Last, a virus lacking A49 was more immunogenic than the WT virus.
Vaccinia virus (VACV) strain Western Reserve gene
A49L
encodes a small intracellular protein with a Bcl-2 fold that is expressed early during infection and has multiple functions. A49 co-precipitates with the E3 ubiquitin ligase β-TrCP and thereby prevents ubiquitylation and proteasomal degradation of IκBα, and consequently blocks activation of NF-κB. In a similar way, A49 stabilizes β-catenin, leading to activation of the wnt signalling pathway. However, a VACV strain expressing a mutant A49 that neither co-precipitates with β-TrCP nor inhibits NF-κB activation, is more virulent than a virus lacking A49, indicating that A49 has another function that also contributes to virulence. Here we demonstrate that gene
A49L
encodes a second, smaller polypeptide that is expressed via leaky scanning translation from methionine 20 and is unable to block NF-κB activation. Viruses engineered to express either only the large protein or only the small A49 protein both have lower virulence than wild-type virus and greater virulence than an
A49L
deletion mutant. This demonstrates that the small protein contributes to virulence by an unknown mechanism that is independent of NF-κB inhibition. Despite having a large genome with about 200 genes, this study illustrates how VACV makes efficient use of its coding potential and from gene
A49L
expresses a protein with multiple functions and multiple proteins with different functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.