The rapid development of modern wind turbine technology has led to increase demand for improving system reliability and practical concern for robust fault monitoring scheme. This paper presents the investigation of a 5MW Dynamic Wind Turbine Energy System that was designed to sustain condition monitoring and fault diagnosis with the goal of improving the reliability operations of universal practical control systems. A hybrid stochastic technique is proposed based on an augmented observer combined with eigenstructure assignment for the parameterisation and the genetic algorithm (GA) optimisation to address the attenuation of uncertainty mostly generated by disturbances. Scenarios-based are employed to explore sensor and actuator faults that have direct and indirect impacts on modern wind turbine system, based on monitoring components that are prone to malfunction. The analysis is aimed to determine the effect of concerned simulated faults from uncertainty in respect to environmental disturbances mostly challenged in real-world operations. The efficiency of the proposed approach will improve the reliability performance of wind turbine system states and diagnose uncertain faults simultaneously. The simulation outcomes illustrate the robustness of the dynamic turbine systems with a diagnostic performance to advance the practical solutions for improving reliable systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.