Bcl-2, which can both reduce apoptosis and retard cell cycle entry, is thought to have important roles in hematopoiesis. To evaluate the impact of its ubiquitous overexpression within this system, we targeted expression of the human bcl-2 gene in mice by using the promoter of the vav gene, which is active throughout this compartment but rarely outside it. The vav-bcl-2 transgene was expressed in essentially all nucleated cells of hematopoietic tissues but not notably in nonhematopoietic tissues. Presumably because of enhanced cell survival, the mice displayed increases in myeloid cells as well as a marked elevation in B and T lymphocytes. The spleen was enlarged and the lymphoid follicles expanded. Although total thymic cellularity was normal, T cell development was altered: cells at the very immature and most mature stages were increased, whereas those at the intermediate stage were decreased. Unexpectedly, blood platelets were reduced by half, suggesting that their production from megakaryocytes is regulated by the Bcl-2 family. Colony formation by myeloid progenitor cells in vitro remained cytokine dependent, and the frequency of most progenitor and preprogenitor cells was normal. Macrophage progenitors were less frequent and yielded smaller colonies, however, perhaps reflecting inhibitory effects of Bcl-2 on cell cycling in specific lineages. After irradiation or factor deprivation, Bcl-2 markedly enhanced clonogenic survival of all tested progenitor and preprogenitor cells. Thus, Bcl-2 has multiple effects on the hematopoietic system. These mice should help to further clarify the role of apoptosis in the development and homeostasis of this compartment.apoptosis ͉ transgenic mice ͉ homeostasis
Cre transgenic mice can be used to delete gene sequences flanked by loxP sites in specific somatic tissues. We have generated vavCre transgenic mice, which can be used to inactivate genes specifically in adult hematopoietic and endothelial cells. In these animals, a Cre transgene is expressed under control of murine vav gene regulatory elements. To assess their usefulness, vavCre transgenic mice were bred with R26R mice, which express a lacZ reporter gene only in cells where Cre-mediated recombination has occurred. VavCre/R26R double-heterozygous offspring were analyzed by beta-galactosidase histochemistry and flow cytometry. VavCre-mediated recombination occurred in most hematopoietic cells of all hematopoietic organs, including the hematopoietic progenitor-rich bone marrow. Recombination also occurred in most endothelial and germ cells, but only rarely in other cell types. The recombination in both hematopoietic and endothelial lineages may partly reflect their putative shared ontogeny and provides a unique tool for simultaneous pan-hematopoietic and endothelial mutagenesis.
The stem cell leukemia (SCL) gene, also known as TAL-1, encodes a basic helix-loop-helix protein that is essential for the formation of all hematopoietic lineages, including primitive erythropoiesis. Appropriate transcriptional regulation is essential for the biological functions of SCL, and we have previously identified five distinct enhancers which target different subdomains of the normal SCL expression pattern. However, it is not known whether these SCL enhancers also regulate neighboring genes within the SCL locus, and the erythroid expression of SCL remains unexplained. Here, we have quantitated transcripts from SCL and neighboring genes in multiple hematopoietic cell types. Our results show striking coexpression of SCL and its immediate downstream neighbor, MAP17, suggesting that they share regulatory elements. A systematic survey of histone H3 and H4 acetylation throughout the SCL locus in different hematopoietic cell types identified several peaks of histone acetylation between SIL and MAP17, all of which corresponded to previously characterized SCL enhancers or to the MAP17 promoter. Downstream of MAP17 (and 40 kb downstream of SCL exon 1a), an additional peak of acetylation was identified in hematopoietic cells and was found to correlate with expression of SCL but not other neighboring genes. This ؉40 region is conserved in human-dog-mouse-rat sequence comparisons, functions as an erythroid cell-restricted enhancer in vitro, and directs -galactosidase expression to primitive, but not definitive, erythroblasts in transgenic mice. The SCL ؉40 enhancer provides a powerful tool for studying the molecular and cellular biology of the primitive erythroid lineage.
To develop a method for targeting expression of genes to the full hematopoietic system, we have used transgenic mice to explore the transcriptional regulation of the vav gene, which is expressed throughout this compartment but rarely outside it. Previously, we showed that a cluster of elements surrounding its promoter could drive hematopoietic-specific expression of a bacterial lacZ reporter gene, but the expression was confined to lymphocytes and was sporadically silenced. Those limitations are ascribed here to the prokaryotic reporter gene. With a human CD4 (hCD4) cell surface reporter, the vav promoter elements drove expression efficiently and stably in virtually all nucleated cells of adult hematopoietic tissues but not notably in nonhematopoietic cell types. In multiple lines, hCD4 appeared on most, if not all, B and T lymphocytes, granulocytes, monocytes, megakaryocytes, eosinophils, and nucleated erythroid cells. Moreover, high levels appeared on both lineage-committed progenitors and the more primitive preprogenitors. In the fetus, expression was evident in erythroid cells of the definitive but not the primitive type. These results indicate that a prokaryotic sequence can inactivate a transcription unit and that the vavpromoter region constitutes a potent transgenic vector for the entire definitive hematopoietic compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.