Cell-free DNA (cfDNA) in the blood provides a noninvasive diagnostic avenue for patients with cancer1. However, characteristics of the origins and molecular features of cfDNA are poorly understood. We developed an approach to evaluate fragmentation patterns of cfDNA across the genome and found that cfDNA profiles of healthy individuals reflected nucleosomal patterns of white blood cells, while patients with cancer had altered fragmentation profiles. We applied this method to analyze fragmentation profiles of 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric, or bile duct cancer and 245 healthy individuals. A machine learning model incorporating genome-wide fragmentation features had sensitivities of detection ranging from 57% to >99% among the seven cancer types at 98% specificity, with an overall AUC of 0.94. Fragmentation profiles could be used to identify the tissue of origin of the cancers to a limited number of sites in 75% of cases. Combining our approach with mutation based cfDNA analyses detected 91% of cancer patients. The results of these analyses highlight important properties of cfDNA and provide a proof of principle approach for screening, early detection, and monitoring of human cancer.
Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.
BackgroundEarly detection plays an essential role to reduce colorectal cancer (CRC) mortality. While current screening methods suffer from poor compliance, liquid biopsy-based strategies for cancer detection is rapidly gaining promise. Here, we describe the development of TriMeth, a minimal-invasive blood-based test for detection of early-stage colorectal cancer. The test is based on assessment of three tumour-specific DNA methylation markers in circulating cell-free DNA.ResultsA thorough multi-step biomarker discovery study based on DNA methylation profiles of more than 5000 tumours and blood cell populations identified CRC-specific DNA methylation markers. The DNA methylation patterns of biomarker candidates were validated by bisulfite sequencing and methylation-specific droplet digital PCR in CRC tumour tissue and peripheral blood leucocytes. The three best performing markers were first applied to plasma from 113 primarily early-stage CRC patients and 87 age- and gender-matched colonoscopy-verified controls. Based on this, the test scoring algorithm was locked, and then TriMeth was validated in an independent cohort comprising 143 CRC patients and 91 controls. Three DNA methylation markers, C9orf50, KCNQ5, and CLIP4, were identified, each capable of discriminating plasma from colorectal cancer patients and healthy individuals (areas under the curve 0.86, 0.91, and 0.88). When combined in the TriMeth test, an average sensitivity of 85% (218/256) was observed (stage I: 80% (33/41), stage II: 85% (121/143), stage III: 89% (49/55), and stage IV: 88% (15/17)) at 99% (176/178) specificity in two independent plasma cohorts.ConclusionTriMeth enables detection of early-stage colorectal cancer with high sensitivity and specificity. The reported results underline the potential utility of DNA methylation-based detection of circulating tumour DNA in the clinical management of colorectal cancer.
Blood circulating cell-free DNA (cfDNA) is becoming popular in the search of promising predictive and prognostic biomarkers. Among these biomarkers, cfDNA methylation markers have especially gained considerable attention. A significant challenge in the utilization of cfDNA methylation markers is the limited amount of cfDNA available for analyses; reportedly, bisulfite conversion (BSC) reduce cfDNA amounts even further. Nevertheless, few efforts have focused on ensuring high cfDNA conversion efficiency and recovery after BSC. To compare cfDNA recovery of different BSC methods, we compared 12 different commercially available BSC kits. We tested whether DNA recovery was affected by the molecular weight and/or quantity of input DNA. We also tested BSC efficiency for each kit. We found that recovery varied for DNA fragments of different lengths: certain kits recovered short fragments better than others, and only 3 kits recovered DNA fragments of <100 bp well. In contrast, DNA input amount did not seem to affect DNA recovery: for quantities spanning between 820 and ∼25,000 genome equivalents per BSC, a linear relation was found between input and recovery amount. Overall, mean recovery ranged between 9 and 32%, with BSC efficiency of 97–99.9%. When plasma cfDNA was used as input for BSC, recovery varied from 22% for the poorest and 66% for the best performing kits, while conversion efficiency ranged from 96 to 100% among different kits. In conclusion, clear performance differences exist between commercially available BSC kits, both in terms of DNA recovery and conversion efficiency. The choice of BSC kit can substantially impact the amount of converted cfDNA available for downstream analysis, which is critical in a cfDNA methylation marker setting.
Background:The B-vitamin folate is among the most studied bioactive food compound, and a dietary intake meeting the daily requirements has been found to reduce the risk of cancer and cardiovascular diseases as well as preventing neural tube defects during fetal development. Several countries have therefore introduced dietary fortification with folic acid. However, clinical and animal studies suggest that folic acid has a dual role in cancer development.Methods:During the period of initial tumour progression, MMTV-PyMT (MMTV-polyoma virus middle T) transgenic mice were fed with normal diet and high folic acid diet.Results:We found that PyMT-induced breast tumours highly express the cancer-specific folate receptor (FR), a feature they share with several human epithelial cancers in which expression of FRα correlates with tumour grade. Mice receiving a high folic acid diet displayed a significantly increased tumour volume compared with mice receiving normal diet. In the largest tumours, only found in mice on high folic acid diet, STAT3 was activated. In primary cells from PyMT tumours, STAT3 was activated upon treatment with folic acid in culture.Conclusions:Our results offer a novel molecular explanation for folic acid-induced growth of existing tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.