Our results suggest subtle sex differences in oxycodone self-administration, which may influence the abuse liability of oxycodone and have ramifications for prescription opioid addiction treatment.
Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record.
Withdrawal from opioid painkillers can produce short‐lived physical symptoms and protracted psychological symptoms including anxiety and depressive‐like states that often lead to opioid misuse and opioid use disorder (OUD). Studies testing the hypothesis that opioid withdrawal potentiates the reinforcing effects of opioid self‐administration (SA) are largely inconclusive and have focused on males. Although some clinical evidence indicates that women are more likely than men to misuse opioids to self‐medicate, preclinical studies in both sexes are lacking. Based on clinical reports, we hypothesized that withdrawal from escalating‐dose morphine injections that approximates a prescription painkiller regimen would lead to increased oxycodone SA to a greater extent in female compared to male rats. After escalating‐dose morphine (5–30 mg/kg or vehicle, twice/day for 12 days), rats underwent a 2‐week abstinence period during which withdrawal signs were measured. The impact of this treatment was assessed on oxycodone SA acquisition, maintenance, dose response, and progressive ratio responding, with additional analyses to compare sexes. We found that both sexes expressed somatic withdrawal, whereas only males demonstrated hyperalgesia in the warm water tail flick assay. During SA acquisition, males with prior morphine exposure took significantly more oxycodone than females. Finally, females with prior morphine exposure demonstrated the lowest motivation to SA oxycodone in the progressive ratio test. Contrary to our initial hypothesis, our findings suggest that prior opioid exposure increases vulnerability to initiate misuse more in males and decreases the reinforcing efficacy of oxycodone in females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.