Since the launch of Ecology Letters in 1998, the field of Pollination Ecology has changed considerably in its focus. In this review, we discuss the major discoveries across the past two decades. We quantitatively synthesise the frequency by which different concepts and topics appeared in the peer-reviewed literature, as well as the connections between these topics. We then look forward to identify pressing research frontiers and opportunities for additional integration in the future. We find that there has been a shift towards viewing plant-pollinator interactions as networks and towards understanding how global drivers influence the plants, pollinators and the ecosystem service of pollination. Future frontiers include moving towards a macroecological view of plant-pollinator interactions, understanding how ecological intensification and urbanisation will influence pollination, considering other interactions, such as plant-microbe-pollinator networks, and understanding the causes and consequences of extinctions. Pollination Ecology is poised to advance our basic understanding of the ecological and evolutionary factors that shape plant-animal interactions and to create applied knowledge that informs conservation decision making.
Anthropogenic environmental change disrupts interactions between plants and their animal pollinators. To assess the importance of different drivers, baseline information is needed on interaction networks and plant reproductive success around the world. We conducted a systematic literature review to determine the state of our knowledge on plant–pollinator interactions and the ecosystem services they provide for European ecosystems. We focussed on studies that published information on plant–pollinator networks, as a community-level assessment of plant–pollinator interactions and pollen limitation, which assesses the degree to which plant reproduction is limited by pollinator services. We found that the majority of our knowledge comes from Western Europe, and thus there is a need for baseline assessments in the traditional landscapes of Eastern Europe. To address this data gap, we quantified plant–pollinator interactions and conducted breeding system and pollen supplementation experiments in a traditionally managed mountain meadow in the Western Romanian Carpathians. We found the Romanian meadow to be highly diverse, with a healthy plant–pollinator network. Despite the presence of many pollinator-dependent plant species, there was no evidence of pollen limitation. Our study is the first to provide baseline information for a healthy meadow at the community level on both plant–pollinator interactions and their relationship with ecosystem function (e.g. plant reproduction) in an Eastern European country. Alongside the baseline data, we also provide recommendations for future research, and the methodological information needed for the continued monitoring and management of Eastern European meadows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.