There is an urgent global need for new strategies and drugs to control and treat multi-drug resistant bacterial infections. In 2017, the World Health Organization (WHO) released a list of 12 antibiotic-resistant priority pathogens and began to critically analyze the antibacterial clinical pipeline. This review analyzes ‘traditional’ and ‘non-traditional’ antibacterial agents and modulators in clinical development current on 30 June 2021 with activity against the WHO priority pathogens, mycobacteria and Clostridioides difficile. Since 2017, 12 new antibacterial drugs have been approved globally, but only vaborbactam belongs to a new antibacterial class. Also innovative is the cephalosporin derivative cefiderocol, which incorporates an iron-chelating siderophore that facilitates Gram-negative bacteria cell entry. Overall, there were 76 antibacterial agents in clinical development (45 traditional and 31 non-traditional) with 28 in Phase 1, 32 in Phase 2, 12 in Phase 3 and four under regulatory evaluation. Forty-one out of 76 (54%) targeted WHO priority pathogens, 16 (21%) against mycobacteria, 15 (20%) against C. difficile and 4 (5%) are non-traditional agents with broad spectrum effects. Nineteen of the 76 antibacterial agents have new pharmacophores and four of these have new modes of actions not previously exploited by marketed antibacterial drugs. Despite there being 76 antibacterial clinical candidates, this analysis indicated that there were still relatively few clinically differentiated antibacterial agents in late-stage clinical development, especially against critical Priority Pathogens. We believe that future antibacterial R&D should focus on the development of innovative and clinically differentiated candidates that have clear and feasible progression pathways to the market.
The WHO launched a Global Action Plan on antimicrobial resistance (AMR) in 2015. World leaders in the G7, G20 and the UN General Assembly have declared AMR to be a global crisis. World leaders have also adopted universal health coverage (UHC) as a key target under the sustainable development goals. This paper argues that neither initiative is likely to succeed in isolation from the other and that the policy goals should be to both provide access to appropriate antimicrobial treatment and reduce the risk of the emergence and spread of resistance by taking a systems approach. It focuses on outpatient treatment of human infections and identifies a number of interventions that would be needed to achieve these policy goals. It then shows how a strategy for achieving key attributes of a health system for UHC can take into account the need to address AMR as part of a UHC strategy in any country. It concludes with a list of recommended priority actions for integrating initiatives on AMR and UHC.
Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.