(2015), The relationship between particle travel distance and channel morphology: Results from physical models of braided rivers, J. Geophys. Res. Earth Surf., 120, 55-74, doi:10.1002 Abstract Channel form and sediment transport are closely linked in alluvial rivers, and as such the development of a conceptual framework for the downstream controls on particle mobility and likely deposition sites has immense value in terms of the way we understand and predictively model rivers. Despite the development of conceptual models which frame flood-scale particle transport distance (termed path length) as a function of channel bar locations, an understanding of the controls on such path lengths in braided rivers remains especially elusive, in large part due to the difficulty in explicitly linking morphology and particle transport distances in the field. Here we utilize a series of laboratory flume experiments to link path length distances with channel morphology. Our morphologic characterization is based on ultrahigh-resolution digital elevation models and bar classifications derived from structure-from-motion topography, while we simultaneously capture particle path lengths using fluorescent tracer particles over the course of five physical model simulations. Our findings underscore the importance of channel bars in acting as deposition sites for particles in transport; 81% of recovered tracers were found in association with compound, point, lateral, or diagonal bars. Bar heads (29%) and bar margins (41%) were the most common bar-related deposition surfaces for recovered tracers. Peaks in particle deposition frequency corresponding to channel bars were often noted on path length distributions from tracer data; most tracers were deposited in areas that had experienced shallow (Δz = 0.002 m) deposition. Average path length distance (2.5 m) was closely related to average confluence-diffluence spacing (2.3 m) across all runs. The transferability of this understanding to braided streams has important implications for the development of simplified morphodynamic models which seek to predict braided channel evolution across multiflood timescales.
Abstract. For extending the applications of structure-from-motion (SfM) photogrammetry in river flumes, we present the main challenges and methods used to collect a large dataset (>1000 digital elevation models, DEMs) of high-quality topographic data using close-range SfM photogrammetry with a resulting vertical precision of ∼1 mm. Automatic target detection, batch processing, and considerations for image quality were fundamental to the successful implementation of the SfM technique on such a large dataset, which was used primarily for capturing details of gravel-bed braided river morphodynamics and sedimentology. While the applications of close-range SfM photogrammetry are numerous, we include sample results from DEM differencing, which was used to quantify morphology change and provide estimates of water depth in braided rivers, as well as image analysis for mapping bed surface texture. These methods and results contribute to the growing field of SfM applications in geomorphology and close-range experimental settings in general.
Ephemeral streams are small headwater streams that only experience streamflow in response to a precipitation event. Due to their highly complex and dynamic spatial and temporal nature, ephemeral streams have been difficult to monitor and are in general poorly understood. This research implemented an extensive network of electrical resistance sensors to monitor three ephemeral streams within the same small headwater catchment in Southern Ontario, Canada. The results suggest that the most common patterns of network expansion and contraction in the studied streams are incomplete coalescence and disintegration, respectively. Binary logistic regression analysis of the primary controls on ephemeral streamflow showed only weak Nagelkerke R2 values, suggesting that there are more complex processes at work in these ephemeral streams. A comparison of all three streams suggests that even ephemeral streams within the same subwatershed may experience differences in network expansion and contraction and may be dominated by different spatial and temporal controls. Copyright © 2013 John Wiley & Sons, Ltd.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.