In situ solid-state NMR methodologies have been employed to investigate the photocatalytic oxidation of ethanol (C 2 H 5 OH) over a TiO 2 -coated optical microfiber catalyst and two other TiO 2 -based catalysts. Adsorption of ethanol on the surface of the TiO 2 /optical microfiber catalyst formed a strongly hydrogen-bonded species and a Ti ethoxide species. In situ UV irradiation experiments under 13 C magic angle spinning (MAS) conditions reveal the formation of two main reaction intermediates, 1,1-diethoxyethane (CH 3 CH(OC 2 H 5 ) 2 ) and acetic acid, under dry conditions. The catalyst was shown to be highly effective for the degradation of ethanol as complete photooxidation of ethanol was observed to form acetic acid and CO 2 . These results were compared to those using a monolayer catalyst supported on porous Vycor glass and powdered TiO 2 . Solid-state NMR investigations on TiO 2 powder modeled after temperature-programmed desorption experiments confirm the identities of the hydrogen-bonded and Ti ethoxide species and show that the strongly bound ethoxide species has a number of adsorption sites. Kinetic experiments indicate this latter species reacts much more rapidly. Studies of the effect of surface hydration show that the presence of water decreases the rate of ethanol photodegradation. Water and ethanol compete for the same adsorption sites on the surface of the TiO 2 catalysts.
This study evaluates the potential mechanism of action and bioactivity of black tea and black tea pomace for type 2 diabetes prevention via inhibition of carbohydrate hydrolyzing enzymes. Black tea leaves were extracted in hot water and black tea pomace was extracted in 70% acetone. The phenolic content of the water extract (WBT) and pomace acetone extracts (AOBT) were 5.77 and 8.9 mg/mL, respectively, both based on the same concentration of solid tea in the extract. The water extract was subjected to C18 extraction and the resulting hydrophobic fraction (HBBT) was further subjected to LH-20 extraction to recover a low molecular weight phenolic enriched fraction (LMW) and a high molecular weight enriched fraction (HMW). The phenolic content of the LMW and HMW fraction were 1.42 and 2.66 mg/mL, respectively. Among water extracts the HMW fraction was most bioactive against α-glucosidase (IC50 = 8.97 μg/mL) followed by HBBT fraction (IC50 = 14.83 μg/mL). However, the HBBT fraction was the most bioactive fraction against α-amylase (IC50 = 0.049 mg/mL). The black tea pomace (AOBT) had significant α-glucosidase inhibitory activity (IC50 = 14.72 μg/mL) but lower α-amylase inhibitory activity (IC50 = 0.21 mg/mL). The phenolic profiles for LMW and HMW fractions were evaluated using HPLC and the differences between the two profiles were identified. Further research is underway to identify and evaluate the phenolic compounds that are present in the HMW fraction. Our findings suggest that black tea and black tea pomace has potential for carbohydrate hydrolyzing enzyme inhibition and this activity depends on high molecular weight phenolic compounds.
Background: In vivo proton magnetic resonance spectroscopy ( 1 H-MRS) studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.