Bovine tuberculosis (bTB) caused by Mycobacterium bovis or M. caprae has recently (re-) emerged in livestock and wildlife in all countries bordering Switzerland (CH) and the Principality of Liechtenstein (FL). Comprehensive data for Swiss and Liechtenstein wildlife are not available so far, although two native species, wild boar (Sus scrofa) and red deer (Cervus elaphus elaphus), act as bTB reservoirs elsewhere in continental Europe. Our aims were (1) to assess the occurrence of bTB in these wild ungulates in CH/FL and to reinforce scanning surveillance in all wild mammals; (2) to evaluate the risk of a future bTB reservoir formation in wild boar and red deer in CH/FL. Tissue samples collected from 2009 to 2011 from 434 hunted red deer and wild boar and from eight diseased ungulates with tuberculosis-like lesions were tested by direct real-time PCR and culture to detect mycobacteria of the Mycobacterium tuberculosis complex (MTBC). Identification of suspicious colonies was attempted by real-time PCR, genotyping and spoligotyping. Information on risk factors for bTB maintenance within wildlife populations was retrieved from the literature and the situation regarding identified factors was assessed for our study areas. Mycobacteria of the MTBC were detected in six out of 165 wild boar (3.6%; 95% CI: 1.4–7.8) but none of the 269 red deer (0%; 0–1.4). M. microti was identified in two MTBC-positive wild boar, while species identification remained unsuccessful in four cases. Main risk factors for bTB maintenance worldwide, including different causes of aggregation often resulting from intensive wildlife management, are largely absent in CH and FL. In conclusion, M. bovis and M. caprae were not detected but we report for the first time MTBC mycobacteria in Swiss wild boar. Present conditions seem unfavorable for a reservoir emergence, nevertheless increasing population numbers of wild ungulates and offal consumption may represent a risk.
Significance and Impact of the Study: Current methods for the discrimination of pathogenic Brachyspira hyodysenteriae and Brachyspira pilosicoli from Brachyspira species with low pathogenic potential have proven to be laborious and time-consuming and are therefore not suitable for routine diagnostics. This study describes the evaluation of MALDI-TOF MS for the identification of different porcine Brachyspira species in routine diagnostic laboratories. The results suggest that MALDI-TOF MS is an effective method for the identification of porcine Brachyspira spp. and accelerates diagnosis of swine dysentery and porcine intestinal spirochaetosis. AbstractThe aim of this study consisted in evaluating MALDI-TOF MS as a tool for the identification of the genus Brachyspira (B.) and its relevant species for the pig industry. First, a database was created with 30 control strains, and superspectra for five different porcine Brachyspira species were calculated. In a second step, 67 field isolates were investigated using MALDI-TOF MS, and results were compared to those obtained using nox gene-based RFLP (reference method) and biochemical tests. Among the 67 field isolates, five different Brachyspira species were detected using nox gene-based RFLP analysis. MALDI-TOF MS analysis correctly assigned all isolates to the genus Brachyspira and identified all isolates from B. hyodysenteriae (29/29), B. pilosicoli (11/11), B. intermedia (4/4) and B. innocens (11/11). In terms of B. murdochii, MALDI-TOF MS assigned one of 12 isolates ambiguously as B. innocens/B. murdochii. The results of this study indicate that MALDI-TOF MS facilitates the diagnosis of swine dysentery and porcine intestinal spirochaetosis.
An Argentine boa (Boa constrictor occidentalis) of 5 yr 7 mo of age was presented for respiratory problems and regurgitation. Radiographs revealed evidence of cardiomegaly and pneumonia. Blood smear examination revealed the presence of intracytoplasmic inclusion bodies in peripheral lymphocytes, consistent with inclusion body disease. Cultures of a tracheal wash sample resulted in growth of Ochrobactrum intermedium and Pseudomonas putida. Echocardiographic examination revealed a large vegetative lesion on the right atrioventricular valve with valvular insufficiency, a mildly dilated right atrium, and pulmonary hypertension. Postmortem examination confirmed the presence of pneumonia and bacterial endocarditis with dystrophic mineralization of the right atrioventricular valve, associated with different bacteria than those cultured from the tracheal wash. The present case is the first report of endocarditis in a boa constrictor and contributes to the rare reports of cardiac disease in snakes.
A five-year-old male dromedary died with symptoms of cachexia and was subjected to etiologic examination. During necropsy, a pyogranulomatous hepatitis, a multifocal granulomatous lymphadenitis and subcutaneous abscess formation in the caudal xyphoid region of the cranial abdomen were identified. Corynebacterium pseudotuberculosis biovar equi was isolated in pure culture from the liver. The visceral form of pseudotuberculosis with biovar equi causing gross liver lesions has not previously been reported in dromedaries.
Background: Floppy kid syndrome (FKS) affects goat kids in the first month of life and is associated with high morbidity and mortality rates. The condition is characterized by neurological signs that can be ascribed to increased plasma D-lactate concentrations. The source of D-lactate has not been identified conclusively, but D-lactate-producing bacteria in the large intestine are thought to be involved.Objectives: To determine the number of colony-forming unit (CFUs) of certain groups of bacteria in the feces of kids with and without FKS.Animals: Nineteen goat kids with clinical signs of FKS, acidemia (pH ≤ 7.2), and plasma D-lactate concentration >7 mM and 15 healthy goat kids without acidemia (pH >7.2) and D-lactate concentration <1 mM.Methods: In this case-control study, the goat kids were examined clinically and blood was collected to measure D-lactate concentration, blood gases, and acid-base parameters. Fecal samples were collected and the total aerobic bacterial count and CFU counts of coliforms, enterococci, staphylococci, streptococci, lactobacilli, and clostridia were determined using the surface plating method.Results: Goat kids with FKS had a mean plasma D-lactate concentration of 10.9 AE 3.7 mM compared with 0.3 AE 0.9 mM in healthy kids, and significantly greater CFU counts for enterococci, streptococci, staphylococci, and lactobacilli than healthy kids.Conclusions and Clinical Importance: The groups of bacteria present in greater numbers in the feces of goat kids with FKS include several D-lactate-producing species, which makes dysbacteriosis a likely cause of the increased plasma D-lactate concentration in FKS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.