ObjeCtiveTo assess whether continuity of care with a general practitioner is associated with hospital admissions for ambulatory care sensitive conditions for older patients.
BackgroundDynamic transmission models are increasingly being used to improve our understanding of the epidemiology of healthcare-associated infections (HCAI). However, there has been no recent comprehensive review of this emerging field. This paper summarises how mathematical models have informed the field of HCAI and how methods have developed over time.MethodsMEDLINE, EMBASE, Scopus, CINAHL plus and Global Health databases were systematically searched for dynamic mathematical models of HCAI transmission and/or the dynamics of antimicrobial resistance in healthcare settings.ResultsIn total, 96 papers met the eligibility criteria. The main research themes considered were evaluation of infection control effectiveness (64%), variability in transmission routes (7%), the impact of movement patterns between healthcare institutes (5%), the development of antimicrobial resistance (3%), and strain competitiveness or co-colonisation with different strains (3%). Methicillin-resistant Staphylococcus aureus was the most commonly modelled HCAI (34%), followed by vancomycin resistant enterococci (16%). Other common HCAIs, e.g. Clostridum difficile, were rarely investigated (3%). Very few models have been published on HCAI from low or middle-income countries.The first HCAI model has looked at antimicrobial resistance in hospital settings using compartmental deterministic approaches. Stochastic models (which include the role of chance in the transmission process) are becoming increasingly common. Model calibration (inference of unknown parameters by fitting models to data) and sensitivity analysis are comparatively uncommon, occurring in 35% and 36% of studies respectively, but their application is increasing. Only 5% of models compared their predictions to external data.ConclusionsTransmission models have been used to understand complex systems and to predict the impact of control policies. Methods have generally improved, with an increased use of stochastic models, and more advanced methods for formal model fitting and sensitivity analyses. Insights gained from these models could be broadened to a wider range of pathogens and settings. Improvements in the availability of data and statistical methods could enhance the predictive ability of models.
BackgroundIn 2016, one in three older people in the UK were living alone. These patients often have complex health needs and require additional clinical and non-clinical support. This study aimed to analyse the association between living alone and health care utilisation in older patients.MethodsWe conducted a retrospective cohort study of 1447 patients over the age of 64, living in 1275 households who were registered at a large general practice in South East London. The utilisation of four different types of health care provision were examined in order to explore the impact of older patients living alone on health care utilisation.ResultsAfter adjusting for patient demographics and clinical characteristics, living alone was significantly associated with a higher probability of utilising emergency department and general practitioner services, with odds ratios of 1.50 (95% confidence interval [CI] 1.16 to 1.93) and 1.40 (95% CI 1.04 to 1.88) respectively.ConclusionsLiving alone has an impact on health care service utilisation for older patients. We show that general practice data can be used to identify older patients who are living alone, and general practitioners are in a unique position to identify those who could benefit from additional clinical and non-clinical support. Further research is needed to understand the mechanism driving higher utilisation for those patients who live alone.Electronic supplementary materialThe online version of this article (10.1186/s12877-018-0939-4) contains supplementary material, which is available to authorized users.
IntroductionAntibiotic resistance poses a threat to public health and healthcare systems. Escherichia coli causes more bacteraemia episodes in England than any other bacterial species. This study aimed to estimate the burden of E. coli bacteraemia and associated antibiotic resistance in the secondary care setting.Materials and methodsThis was a retrospective cohort study, with E. coli bacteraemia as the main exposure of interest. Adult hospital in-patients, admitted to acute NHS hospitals between July 2011 and June 2012 were included. English national surveillance and administrative datasets were utilised. Cox proportional hazard, subdistribution hazard and multistate models were constructed to estimate rate of discharge, rate of in-hospital death and excess length of stay, with a unit bed day cost applied to the latter to estimate cost burden from the healthcare system perspective.Results14,042 E. coli bacteraemia and 8,919,284 non-infected inpatient observations were included. E. coli bacteraemia was associated with an increased rate of in-hospital death across all models, with an adjusted subdistribution hazard ratio of 5.88 (95% CI: 5.62–6.15). Resistance was not found to be associated with in-hospital mortality once adjusting for patient and hospital covariates. However, resistance was found to be associated with an increased excess length of stay. This was especially true for third generation cephalosporin (1.58 days excess length of stay, 95% CI: 0.84–2.31) and piperacillin/tazobactam resistance (1.23 days (95% CI: 0.50–1.95)). The annual cost of E. coli bacteraemia was estimated to be £14,346,400 (2012 £), with third-generation cephalosporin resistance associated with excess costs per infection of £420 (95% CI: 220–630).ConclusionsE. coli bacteraemia places a statistically significant burden on patient health and the hospital sector in England. Resistance to front-line antibiotics increases length of stay; increasing the cost burden of such infections in the secondary care setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.