Sustainable long-term solutions to managing tailings storage facilities (TSFs) are integral for mines to operate in a safe and environmentally responsible manner. The long-term storage of subaqueous tailings can pose significant safety, environmental, and economic risks; therefore, alternative containment strategies for maintaining geochemical stability of reactive materials must be explored. In this study, the physical and geochemical stabilization of coal tailings using microbially induced calcite precipitation (MICP) was evaluated at a laboratory pilot scale. Three application techniques simulated commonly used agricultural approaches and equipment that could be deployed for field-scale treatment: spraying on treatment solutions with irrigation sprinklers, mixing tailings and treatment solutions with a rototiller, and distributing treatment solutions via shallow trenches using an excavator ripper. Test cells containing 1.0 × 1.0 × 0.5 m of tailings were treated with ureolytic bacteria (Sporosarcina pasteurii) and cementation solutions composed of urea and calcium chloride for 28 days. Penetrometer tests were performed following incubation to evaluate the extent of cementation. The spray-on application method showed the greatest strength improvement, with in an increase in surface strength of more than 50% for the 28-day testing period. The distribution of treatment solution using trenches was found to be less effective and resulted in greater variability in particle size distribution of treated tailings and would not be recommended for use in the field. The use of rototilling equipment provided a homogenous distribution of treatment solution; however, the disruption to the tailings material was less effective for facilitating effective cementation. Bacterial plate counts of soil samples indicated that S. pasteurii cultures remained viable in a tailings environment for 28 days at 18 °C and near-neutral pH. The treatment was also found to stabilize the pH of tailings porewater sampled over the 28-day incubation period, suggesting the potential for the treatment to provide short-term geochemical stability under unsaturated conditions.
Sustainable long-term solutions to managing tailings storage facilities (TSFs) are integral for mines to operate in a safe and environmentally responsible manner. The long-term storage of subaqueous tailings can pose significant safety, environmental, and economic risks, therefore alternative containment strategies for maintaining geochemical stability of reactive materials must be explored. In this study, the physical and geochemical stabilization of coal tailings using microbial induced calcite precipitation (MICP) was evaluated at a laboratory pilot scale. Three application techniques simulated commonly used agricultural approaches and equipment that could be deployed for field-scale treatment: spraying on treatment solutions with irrigation sprinklers, mixing tailings and treatment solutions with a rototiller, and distributing treatment solutions via shallow trenches using an excavator ripper. Test cells containing 1.0 x 1.0 x 0.5m of tailings were treated with ureolytic bacteria (Sporosarcina pasteurii) and cementation solutions composed of urea and calcium chloride for 28 days. Penetrometer tests were performed following incubation to evaluate the extent of cementation. The spray-on application method showed the greatest strength improvement, with in an increase in surface strength of more than 50% for the 28-day testing period. The distribution of treatment solution using trenches was found to be less effective and resulted in greater variability in particle size distribution of treated tailings and would not be recommended for use in the field. The use of rototilling equipment provided a homogenous distribution of treatment solution, however, the disruption to the tailings material was less effective for facilitating effective cementation. Bacterial plate counts of soil samples indicated that S. pasteurii cultures remained viable in a tailings environment for 28 days at 18˚C and near-neutral pH. The treatment was also found to stabilize the pH of tailings porewater sampled over the 28-day incubation period, suggesting the potential for the treatment to provide short-term geochemical stability under unsaturated conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.