We present a quantum dynamical study of exciton transfer across a torsional defect that locally breaks the pi-conjugation in an oligo-(p-phenylene vinylene) (OPV) fragment. A site-based vibronic coupling Hamiltonian is used which is formulated in a comparative fashion (i) for a Frenkel exciton basis, assuming localized electron-hole pairs whose superposition yields a delocalized exciton, and (ii) more accurately, for a Merrifield type exciton basis including spatially separated electron-hole pairs. Starting from a partially delocalized ("spectroscopic unit") initial condition, the observed transfer dynamics is found to involve two characteristic time scales: (i) a very rapid, coherent transient on a 10-100 femtosecond scale, largely determined by Rabi type oscillations modulated by bond-length-alternation modes, and (ii) a slower time scale involving the planarization of the torsional coordinates that determines the onset of a quasi-stationary exciton-polaron state, and in the process leads to a "healing" of the torsional defect within - 500 femtoseconds. The dynamics obtained from the full electron-hole basis vs. Frenkel basis are in good agreement. In the full electron-hole dynamics, the transients are found to involve a rapid expansion and subsequent contraction of the electron-hole coherence size. Quantum dynamical simulations for a minimal six-site model involving 36 states and 22 vibrational modes, were carried out using the multiconfiguration time dependent Hartree (MCTDH) method.
We describe a novel two-layer variant of the Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH) approach which improves on the performance and convergence properties of quantum propagation based on variationally evolving frozen Gaussians (FGs). While the standard scheme uses factorizable multi-dimensional FGs, the present approach combines these into flexible, MCTDH-like single-particle functions. At the same time, the expensive variational evolution of the Gaussian parameters is reduced to low-dimensional subspaces. As a result, the novel scheme significantly alleviates the current bottleneck to accurate propagation in G-MCTDH and its variational multiconfigurational Gaussian (vMCG) variant. Since the first-layer single-particle functions are chosen to be orthogonal, the present approach can be straightforwardly combined with existing multi-layer MCTDH schemes.
While the use of Frenkel-type models for semiconducting polymer assemblies and related molecular aggregates is well established, the direct parametrization of such models based on electronic structure data is attempted less frequently. In this work, we develop a systematic mapping procedure which is adapted to J-type and H-type homo-aggregate systems. The procedure is based upon the analytic solution of an inverse eigenvalue problem for an effective Frenkel Hamiltonian with nearest-neighbor couplings. Vibronic interactions are included for both site-local and site-correlated modes. For illustration, an application is presented to the excited-state ab initio potential energy surfaces (PESs) of an oligothiophene octamer. The procedure performs a pointwise mapping of the PESs of oligomers of arbitrary chain length n, provided that the electronic ground state and any two of the n lowest adiabatic states of the excitonic manifold of interest are known. These three states are reproduced exactly by the procedure while the remaining n - 2 states of the excitonic manifold can be predicted. Explicit conditions are derived permitting to verify whether a given data set is compatible with the effective Frenkel model under study.
A variational formulation of mixed quantum-classical dynamics is proposed, based upon a wave function form of Gaussianbased multiconfiguration time-dependent Hartree (G-MCTDH) type. Using semiclassically scaled Gaussian wave packets that lead to a classical evolution in an appropriate limit, a multiconfigurational Ehrenfest dynamics is obtained. Due to the variational framework, the resulting quantum-classical dynamics is consistent and accounts for correlations between the quantum and classical subspaces.
We report on first applications of the Two-Layer Gaussian-based Multi-Configuration Time-Dependent Hartree (2L-GMCTDH) method [Römer et al., J. Chem. Phys. 138, 064106 (2013)] for high-dimensional quantum propagation using variational Gaussian basis sets. This method circumvents the limitations of conventional variational Gaussian wavepacket (GWP) methods by introducing a hierarchical wavefunction representation with a fully flexible first layer composed of orthogonal single-particle functions, which are in turn expressed as superpositions of GWPs of fixed width. The method is applied to a model Hamiltonian describing vibrational energy transport through a molecular chain. The model combines bilinear site-to-site couplings with site-local couplings induced by cubic anharmonicities. We report on simulation results for realizations comprising 5 sites with 35 vibrational modes and 18 sites with 90 vibrational modes, which are shown to be in excellent agreement with reference calculations by the Multi-Layer MCTDH method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.