Forecasting of wind speeds is necessary for the planning and operations of the wind power generating plants. This research investigates the short term forecasting of wind speeds at tall tower heights for stations within Missouri: Columbia, Neosho and Blanchard. The first objective was to characterize the chaotic nature of this parameter using mono and multi fractal analysis using the Rescale Range Analysis (R/S Analysis) and the Multifractal Detrended Fluctuation Analysis respectively (MF-DFA). It was determined that the system was fractal and there were no trends indicative of increasing fractality and complexity with increasing height. The second objective was the qualitative and quantitative chaotic characterization of the wind speeds using phase-space portraits and the Largest Lyapunov Exponent (LLE) respectively. The methods confirm the results of the fractal analyses. A simple non-linear prediction algorithm, Empirical Dynamical Modeling (EDM) was then used to forecast the wind speeds using a moving window. It was determined that the EDM was comparable to persistence. It beats this benchmark model in the very short term range of one time step or 10 minutes. The third objective was to cluster the data using Self-Organizing Maps (SOMs), having identified the optimum number of clusters as 4 using the Elbow and Silhouette Methods, among others. Three continuous intervals belonging to a particular cluster, which represented approximately 50 percent and over of the input vectors or rows from the data frame were identified. These intervals were then used as inputs into a Long Short-Term Memory Network (LSTM) with variables, pressure and wind speeds, as well as a lagged series LSTM with embedding dimension, d, and time delay (tau). These were compared to the Moving window Auto Regressive Integrated Moving Average (ARIMA) and to persistence. It was determined that the lagged series LSTM improved on the LSTM with wind speed and pressure series inputs, and all models beat persistence. The lagged LSTM beats the Moving ARIMA for at least 2 of the forecasting times of 60 and 120 minutes for all intervals.
The overall purpose of this paper is to post-evaluate the predictability of Hurricane Florence using the Advanced Research Weather Research Forecast (WRF) (ARW) version of a mesoscale model. This was performed over the period from 0000 UTC 13 September 2018 through 0000 UTC 18 September 2018. The WRF ARW core resolution used here was the 27-km grid spacing chosen to in order to balance finer resolution against in house processing time and storage. The large-scale analysis showed that a change in the Northern Hemisphere flow regime, especially the flow in the western part of the Northern Hemisphere may have contributed partly to the reduced forward speed of the tropical cyclone. In order to measure the predictability of a system, we will use different convective and boundary layer schemes initialized from the same conditions. The results demonstrated that the sign of the local IRE tendency was similar to that of the Northern Hemisphere Integrated Enstrophy. The results also showed that when the boundary layer, convective, and cloud microphysical schemes of the model were varied, the areal coverage of heavy precipitation of Florence was under-forecast by approximately 10% or more, and the heaviest amounts were under-forecast by an average of about 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.