In areas of high relief, many glaciers have extensive covers of supraglacial debris in their ablation zones, which alters both rates and spatial patterns of melting, with important consequences for glacier response to climate change. Wastage of debris-covered glaciers can be associated with the formation of large moraine-dammed lakes, posing risk of glacier lake outburst floods (GLOFs). In this paper, we use observations of glaciers in the Mount Everest region to present an integrated view of debris-covered glacier response to climate change, which helps provide a long-term perspective on evolving GLOF risks. In recent decades, debris-covered glaciers in the Everest region have been losing mass at a mean rate of 0.32 m yr¹, although in most cases there has been little or no change in terminus position. Mass loss occurs by 4 main processes: (1) melting of clean ice close to glacier ELAs; (2) melting beneath surface debris; (3) melting of ice cliffs and calving around the margins of supraglacial ponds; and (4) calving into deep proglacial lakes. Modelling of processes (1) and (2) shows that Everest-region glaciers typically have an inverted ablation gradient in their lower reaches, due to the effects of a down-glacier increase in debris thickness. Mass loss is therefore focused in the mid parts of glacier ablation zones, causing localised surface lowering and a reduction in downglacier surface gradient, which in turn reduce driving stress and glacier velocity, so the lower ablation zones of many glaciers are now stagnant. Model results also indicate that increased summer temperatures have raised the altitude of the rain-snow transition during the summer monsoon period, reducing snow accumulation and ice flux to lower elevations. As downwasting proceeds, formerly efficient supraglacial and englacial drainage networks are broken up, and supraglacial lakes form in hollows on the glacier surface. Ablation rates around supraglacial lakes are typically one or two orders of magnitude greater than sub-debris melt rates, so extensive lake formation accelerates overall rates of ice loss. Most supraglacial lakes are 'perched' above hydrological base level, and are susceptible to drainage if they become connected to the englacial drainage system. Speleological surveys of conduits show that large englacial voids can be created by drainage of warm lake waters along pre-existing weaknesses in the ice. Roof collapses can open these voids up to the surface, and commonly provide the nuclei of new lakes. Thus, by influencing both lake drainage and formation, englacial conduits exert a strong control on surface ablation rates. An important threshold is crossed when downwasting glacier surfaces intersect the hydrological base level of the glacier. Base-level lakes formed behind intact moraine dams can grow monotonically, and in some cases can pose serious GLOF hazards. Glacier termini can evolve in different ways in response to the same climatic forcing, so that potentially hazardous lakes will form in some situations but no...
ABSTRACT. The ablation areas of debris-covered glaciers typically consist of a complex mosaic of surface features with contrasting processes and rates of mass loss. This greatly complicates glacier response to climate change, and increases the uncertainty of predictive models. In this paper we present a series of high-resolution DEMs and repeat lake bathymetric surveys on Ngozumpa Glacier, Nepal, to study processes and patterns of mass loss on a Himalayan debris-covered glacier in unprecedented detail. Most mass loss occurs by melt below supraglacial debris, and melt and calving of ice cliffs (backwasting). Although ice cliffs cover only ∼5% of the area of the lower tongue, they account for 40% of the ablation. The surface debris layer is subject to frequent re-distribution by slope processes, resulting in large spatial and temporal differences in debris-layer thickness, enhancing or inhibiting local ablation rates and encouraging continuous topographic inversion. A moraine-dammed lake on the lower glacier tongue (Spillway Lake) underwent a period of rapid expansion from 2001 to 2009, but later experienced a reduction of area and volume as a result of lake level lowering and sediment redistribution. Rapid lake growth will likely resume in the near future, and may eventually become up to 7 km long.
Abstract. We provide the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: (1) a seasonal subglacial drainage system below the upper ablation zone; (2) supraglacial channels, allowing efficient meltwater transport across parts of the upper ablation zone; (3) submarginal channels, allowing long-distance transport of meltwater; (4) perched ponds, which intermittently store meltwater prior to evacuation via the englacial drainage system; (5) englacial cut-and-closure conduits, which may undergo repeated cycles of abandonment and reactivation; and (6) a "base-level" lake system (Spillway Lake) dammed behind the terminal moraine. The distribution and relative importance of these elements has evolved through time, in response to sustained negative mass balance. The area occupied by perched ponds has expanded upglacier at the expense of supraglacial channels, and Spillway Lake has grown as more of the glacier surface ablates to base level. Subsurface processes play a governing role in creating, maintaining, and shutting down exposures of ice at the glacier surface, with a major impact on spatial patterns and rates of surface mass loss. Comparison of our results with observations on other glaciers indicate that englacial drainage systems play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
Supra‐glacial lakes and ponds can create hotspots of mass loss on debris‐covered glaciers. While much research has been directed at understanding lateral lake expansion, little is known about the rates or processes governing lake deepening. To a large degree, this knowledge gap persists due to sparse observations of lake beds. Here we report on the novel use of ground penetrating radar (GPR) surveys to simultaneously collect supra‐glacial lake bathymetry and bottom composition data from Spillway Lake (surface area of 2.4 × 105 m2; volume of 9.5 × 104 m3), which is located in the terminus region of the Ngozumpa Glacier in the Khumbu region of the Nepal Himalaya. We identified two GPR bottom signals corresponding to two sedimentary facies of (1) sub‐horizontal layered fine sediment drape and (2) coarse blocky diamict. We provide an understanding of the changes in subaqueous debris distribution that occur through stages of lake expansion by combining the GPR results with in situ observations of shoreline deposits matching the interpreted facies. From this, we present an updated conceptual model of supra‐glacial lake evolution, with the addition of data on the evolving debris environment, showing how dominant depositional processes can change as lakes evolve from perched lakes to multi‐basin base‐level lakes and finally onto large moraine‐dammed lakes. Throughout lake evolution, processes such as shoreline steepening, lakebed collapse into voids and conduit interception, subaerial and subaqueous calving and rapid areal expansion alter the spatial distribution and makeup of lakebed debris and sediments forcing a number of positive and negative feedbacks on lake expansion. Copyright © 2016 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.