Magnetic skyrmions are two-dimensional non-collinear spin textures characterized by an integer topological number. Room-temperature skyrmions were recently found in magnetic multilayer stacks, where their stability was largely attributed to the interfacial Dzyaloshinskii–Moriya interaction. The strength of this interaction and its role in stabilizing the skyrmions is not yet well understood, and imaging of the full spin structure is needed to address this question. Here, we use a nitrogen-vacancy centre in diamond to measure a map of magnetic fields produced by a skyrmion in a magnetic multilayer under ambient conditions. We compute the manifold of candidate spin structures and select the physically meaningful solution. We find a Néel-type skyrmion whose chirality is not left-handed, contrary to preceding reports. We propose skyrmion tube-like structures whose chirality rotates through the film thickness. We show that NV magnetometry, combined with our analysis method, provides a unique tool to investigate this previously inaccessible phenomenon.
Magnetic materials that exhibit chiral domain walls are of great interest for spintronic devices. In this work, we examine the temperature-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI) in Pt/Co/Cu thin film heterostructures. We extract the DMI strength, D, from static domain spacing analysis between 300 K and 500 K and compare its temperature dependence to that of the magnetic anisotropy, K u , and saturation magnetization, M s. Consistent with expected scaling in thin films, M s exhibits Bloch-law temperature scaling and K u scales as M s 2:160:1. However, D varies more strongly with temperature than expected, scaling as D / M s 4:960:7 , indicating that interfacial DMI is more sensitive to thermal fluctuations than bulk magnetic properties. We suggest that this may be related to the temperature dependence of locally induced magnetic moments in the Pt underlayer and the 3d-5d orbital interactions at the interface. While we observe stable domain widths in the studied temperature range, a strongly temperature dependent DMI may have significant consequences for potential devices based on the chiral domain wall or skyrmion motion.
Perpendicularly magnetized thin films with a strong Dzyaloshinskii-Moriya interaction (DMI) exhibit chiral spin structures such as Néel domain walls and skyrmions. These structures are promising candidates for nextgeneration magnetic memory devices. Determining the magnitude of the DMI accurately is key to engineering materials for such applications. Existing approaches are based on quantities extracted either from magnetization dynamics, which present experimental and theoretical challenges, or from measurements of quasistatic domain spacing, which so far have been analyzed using incomplete models or prohibitively slow micromagnetic simulations. Here, we use a recently developed analytical model of stripe domain widths in perpendicularly magnetized multilayers to extract the DMI from domain images combined with magnetometry data. Our approach is tested on micromagnetically simulated domain patterns, where we achieve a 1% agreement of the extracted DMI with the DMI used to run the simulation. We then apply our method to determine the thickness-dependent DMI in two experimental materials, one with ([Pt(2.5-7.5 nm)/Co 60 Fe 20 B 20 (0.8 nm)/MgO(1.5 nm)] 13) and one without ([Pt(2.5-7.5 nm)/Co(0.8 nm)/Pt(1.5 nm)] 13) inversion symmetry breaking. We discuss the means to obtain realistic error bars with our method. Our results demonstrate that analytical domain spacing analysis is a powerful tool to extract the DMI from technologically relevant multilayer materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.