Unlike activated CD4+ T cells, resting CD4+ T cells are highly resistant to productive HIV-1 infection1–8. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4+ T cells. SAMHD1 is abundantly expressed in resting CD4+ T cells circulating in peripheral blood and residing in lymphoid organs. The early restriction to infection in unstimulated CD4+ T cells is overcome by HIV-1 or HIV-2 virions into which viral Vpx is artificially or naturally packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx-mediated proteasomal degradation of SAMHD1 and elevation of intracellular deoxynucleotide pools precede successful infection by Vpx-carrying HIV. Resting CD4+ T cells from healthy donors following SAMHD1 silencing or from a patient with Aicardi-Goutières syndrome homozygous for a nonsense mutation in SAMHD1 were permissive for HIV-1 infection. Thus, SAMHD1 imposes an effective restriction to HIV-1 infection in the large pool of noncycling CD4+ T cells in vivo. Bypassing SAMHD1 was insufficient for the release of viral progeny, implicating other barriers at later stages of HIV replication. Together, these findings may unveil new ways to interfere with the immune evasion and T cell immunopathology of pandemic HIV-1.
Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the (13)C(6)-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood cells and organs. The F2 generation was completely labeled in all organs tested. SILAC analysis from various organs lacking expression of beta1 integrin, beta-Parvin, or the integrin tail-binding protein Kindlin-3 confirmed their absence and disclosed a structural defect of the red blood cell membrane skeleton in Kindlin-3-deficient erythrocytes. The SILAC-mouse approach is a versatile tool by which to quantitatively compare proteomes from knockout mice and thereby determine protein functions under complex in vivo conditions.
Integrin activation is essential for the function of all blood cells, including platelets and leukocytes. The blood cell-specific FERM domain protein Kindlin-3 is required for the activation of the beta1 and beta3 integrins on platelets. Impaired activation of beta1, beta2 and beta3 integrins on platelets and leukocytes is the hallmark of a rare autosomal recessive leukocyte adhesion deficiency syndrome in humans called LAD-III, characterized by severe bleeding and impaired adhesion of leukocytes to inflamed endothelia. Here we show that Kindlin-3 also binds the beta2 integrin cytoplasmic domain and is essential for neutrophil binding and spreading on beta2 integrin-dependent ligands such as intercellular adhesion molecule-1 and the complement C3 activation product iC3b. Moreover, loss of Kindlin-3 expression abolished firm adhesion and arrest of neutrophils on activated endothelial cells in vitro and in vivo, whereas selectin-mediated rolling was unaffected. Thus, Kindlin-3 is essential to activate the beta1, beta2 and beta3 integrin classes, and loss of Kindlin-3 function is sufficient to cause a LAD-III-like phenotype in mice.
Proteolytic cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is crucial for infectivity and virus spread. The proteases HAT (human airway trypsin-like protease) and TMPRSS2 (transmembrane protease serine S1 member 2) known to be present in the human airways were previously identified as proteases that cleave HA. We studied subcellular localization of HA cleavage and cleavage inhibition of seasonal influenza virus A/Memphis/14/96 (H1N1) and pandemic virus A/Hamburg/5/ 2009 (H1N1) in MDCK cells that express HAT and TMPRSS2 under doxycycline-induced transcriptional activation. We made the following observations: (i) HA is cleaved by membrane-bound TMPRSS2 and HAT and not by soluble forms released into the supernatant; (ii) HAT cleaves newly synthesized HA before or during the release of progeny virions and HA of incoming viruses prior to endocytosis at the cell surface, whereas TMPRSS2 cleaves newly synthesized HA within the cell and is not able to support the proteolytic activation of HA of incoming virions; and (iii) cleavage activation of HA and virus spread in TMPRSS2-and HATexpressing cells can be suppressed by peptide mimetic protease inhibitors. The further development of these inhibitors could lead to new drugs for influenza treatment.Human influenza viruses cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Furthermore, the emergence of a new influenza virus for which there is little or no immunity in the human population may provoke an influenza pandemic, as is the case with the currently circulating swine origin H1N1 influenza A virus.Influenza virus replication is initiated by the surface glycoprotein hemagglutinin (HA) that mediates binding to sialic acid-containing cell surface receptors and fusion of the viral envelope with the endosomal membrane. HA is synthesized as a precursor protein HA0 and needs to be cleaved by a host cell protease into the subunits HA1 and HA2 to gain its fusion capacity (10,20,37). Proteolytic cleavage of HA0 enables HA to undergo conformational changes at low pH that expose the N-terminal hydrophobic fusion peptide of HA2 and trigger membrane fusion (36). HA0 of most avian and mammalian influenza viruses contains a single arginine, rarely a single lysine, at the cleavage site. In general, activation of HA0 with a monobasic cleavage site was assumed to occur extracellularly when virions are already released from the cells, and trypsin (21, 22), as well as several trypsin-like proteases such as plasmin (12, 23, 24), tryptase Clara from rat bronchiolar epithelial Clara cells, mast cell tryptase from porcine lung (19), and a protease similar to blood clotting factor Xa from chicken allantoic fluid (13), have been identified as HA-activating enzymes in vitro. Furthermore, some bacterial proteases were shown to support proteolytic activation of HA, too (32, 41). However, the proteases responsible for HA cleavage in the human airways were only poorly defined until recent...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.