All activated sludge systems for removing phosphate microbiologically are configured so the biomass is cycled continuously through alternating anaerobic and aerobic zones. This paper describes a novel aerobic process capable of decreasing the amount of phosphate from 10 to 12 mg P liter ؊1 to less than 0.1 mg P liter ؊1(when expressed as phosphorus) over an extended period from two wastewaters with low chemical oxygen demand. One wastewater was synthetic, and the other was a clarified effluent from a conventional activated sludge system. Unlike anaerobic/aerobic enhanced biological phosphate removal (EBPR) processes where the organic substrates and the phosphate are supplied simultaneously to the biomass under anaerobic conditions, in this aerobic process, the addition of acetate, which begins the feed stage, is temporally separated from the addition of phosphate, which begins the famine stage. Conditions for establishing this process in a sequencing batch reactor are detailed, together with a description of the changes in poly--hydroxyalkanoate (PHA) and poly(P) levels in the biomass occurring under the feed and famine regimes, which closely resemble those reported in anaerobic/aerobic EBPR processes. Profiles obtained with denaturing gradient gel electrophoresis were very similar for communities fed both wastewaters, and once established, these communities remained stable over prolonged periods of time. 16S rRNA-based clone libraries generated from the two communities were also very similar. Fluorescence in situ hybridization (FISH)/microautoradiography and histochemical staining revealed that "Candidatus Accumulibacter phosphatis" bacteria were the dominant poly(P)-accumulating organisms (PAO) in both communities, with the phenotype expected for PAO. FISH also identified large numbers of betaproteobacterial Dechloromonas and alphaproteobacterial tetrad-forming organisms related to Defluviicoccus in both communities, but while these organisms assimilated acetate and contained intracellular PHA during the feed stages, they never accumulated poly(P) during the cycles, consistent with the phenotype of glycogen-accumulating organisms.High levels of phosphate in effluents from activated sludge systems not designed to remove it can lead to toxic cyanobacterial blooms in receiving bodies of water. Consequently, efforts have been directed towards removing phosphate during treatment by microbiological means with a process called enhanced biological phosphorus removal (EBPR), where phosphate is removed from the wasted biomass as intracellular poly(P) (5, 37, 45). Such treatment processes are based on the underlying principle that the biomass needs to be recycled repeatedly through alternating anaerobic and aerobic stages (37), a requirement regarded as crucial for successful EBPR operation. Only after repeated recycling are poly(P)-accumulating organisms (PAO) thought to have a selective advantage over other populations, eventually allowing them to become dominant (5,37,45). In the anaerobic (feed) stage, PAO are belie...
Molecular data show that the filamentous bacterium Eikelboom type 0092, frequently seen in Australian activated sludge plants, is a member of the phylum Chloroflexi. Fluorescence in situ hybridization (FISH) probes designed against cloned 16S rRNA sequences from a full-scale enhanced biological phosphate removalactivated sludge plant community, where this was a dominant filament morphotype, suggest that it can exist as two variants, differing in their trichome diameter. When applied to samples from several treatment plants in eastern Australia, each FISH probe targeted only the type 0092 filament morphotype against which it was designed. The patterns of FISH signals generated with both were consistent with the ribosomes not being evenly distributed but arranged as intracellular aggregates. The FISH survey data showed that these two variants appeared together in most but not all of the plants examined. None stained positively for intracellular presence of either poly--hydroxyalkanoates or polyphosphate.Most activated sludge plants suffer from the operational disorders of bulking and foaming, both of which are caused by excessive growth of certain filamentous bacteria. Several different filament morphotypes have been described from systems treating domestic and industrial wastes (17, 18) but, in the absence of pure cultures, many of these have never been characterized sufficiently to resolve their taxonomy or provide them with valid names. Hence, they are often still referred to as numerical types persisting from the study of Eikelboom (18). Success has been achieved with some cultured and uncultured filaments in elucidating their phylogeny from 16S rRNA sequence analyses (6, 9, 10, 31, 50) and providing them with valid names (37, 49). Furthermore, with such sequence information, rRNA targeted oligonucleotide probes have been designed for their in situ identification and, together with microautoradiography (MAR) and other techniques (29,40), their ecophysiology may be elucidated (25,27,28). Type 0092, originally described by Eikelboom (18), appears prominently in many filament surveys carried out on plants around the world, where microscopy was used to identify them (35, 48). These morphotypes have been associated especially with long sludge age (Ͼ15-day) operational conditions (22) and thus frequently appear in enhanced biological phosphate removal (EBPR) systems (see, for example, reference 11), where the biomass is recycled repeatedly through anaerobic: aerobic zones. Consequently, this filament morphotype was classified as an "all-zone" grower by Wanner and Grau (52), able in their view to grow under aerobic, anoxic, and anaerobic conditions. However, its physiology from pure culture studies was described as being strictly aerobic (13, 21). These isolates were never deposited in recognized culture collections, and so confirmation of their identity is difficult. Similarly, the precise identification of the type 0092 filaments claimed to have been cultured by Ramothokang et al. (43) is unclear.Type 0092 has ver...
Two alphaproteobacterial Neisser negative 'Nostocoida limicola' morphotypes differing slightly in their trichome diameter and filament regularity were dominant populations in the Bendigo, Victoria, Australia activated sludge community removing phosphorus (P). Neither responded to the FISH probes available for any of the other alphaproteobacterial 'N. limicola' morphotypes. Instead both fluoresced with the DF988 FISH probe designed originally to target alphaproteobacterial cluster II Defluviicoccus tetrad forming organisms. A 16S rRNA based clone library from this biomass revealed that the alphaproteobacterial clones grouped closely with Candidatus 'Monilibacter batavus' and Defluviicoccus clones in a cluster separate from the existing cluster I and II Defluviicoccus. When a FISH probe was designed against these, it only hybridized to the thinner and less abundant 'N. limicola' morphotype. Micromanipulation-RT-PCR was used to selectively recover the main 'N. limicola' morphotype and a FISH probe designed against the 16S rRNA clones generated from it showed only this filament fluoresced. From FISH based surveys, both 'N. limicola' variants occurred frequently in phosphorus removal activated sludge systems in Australia treating domestic waste. The data suggest that they represent two new strains of Candidatus 'Monilibacter', which on this evidence are filamentous members of the genus Defluviicoccus, a potential competitor for the polyphosphate accumulating organisms in these communities.
Failure of a continuously aerated sequencing batch reactor (SBR) pilot plant-enhanced biological phosphorus removal (EBPR) process, designed to remove phosphorus from the clarified effluent from a conventional non-EBPR wastewater treatment plant, was associated with the dominance (c. 50% of the biovolume) of gammaproteobacterial coccobacilli. Flow cytometry and subsequent clone library generation from an enriched population of these Gammaproteobacteria showed that their 16S rRNA genes were most similar to partial clone sequences obtained from an actively denitrifying SBR community, and from anaerobic : aerobic EBPR communities. Under the SBR operating conditions used here, these cells stained for poly-beta-hydroxyalkanoates, but never polyphosphate. Applying FISH probes designed against them in combination with microautoradiography showed that they could also assimilate acetate 'aerobically'. FISH analyses of biomass samples from the full-scale treatment plant providing the pilot plant feed showed that they were present there in high numbers. However, they were not detected by FISH in laboratory-scale communities of the same aerated laboratory-scale EBPR process even when EBPR had failed, or from several full-scale EBPR plants or other activated sludge processes.
Long-term influences of different steady-state pH conditions on microbial community composition were determined by fluorescence in situ hybridization (FISH) in a laboratory scale reactor configured for enhanced biological phosphorus removal (EBPR). Chemical profiles were consistent with shifts in populations from polyphosphate-accumulating organisms (PAO) to glycogen-accumulating organisms (GAO) when pH fell from pH 7.5 to 7.0 and then to 6.5. While biomass was both dispersed and flocculated at pH 7.5, almost complete granulation occurred gradually after pH was dropped to 7.0, and these granules increased in size as the pH was reduced further to 6.5. Reverting back to pH 7.5 led to granule breakdown and corresponding increases in anaerobic phosphate release. Granules consisted almost entirely of Accumulibacter PAO cells, while putative GAO populations were always present in small numbers. Results suggest that low pH may contribute to granulation under these operational conditions. While chemical profiles suggested the PAO:GAO balance was changing as pH fell, FISH failed to reveal any marked corresponding increase in GAO abundances. Instead, TEM evidence suggested the Accumulibacter PAO phenotype was becoming more like that of a GAO. These data show how metabolically adaptable the Accumulibacter PAO can be under anaerobic:aerobic conditions in being able to cope with marked changes in plant conditions. They suggest that decreases in EBPR capacity may not necessarily reflect shifts in community composition, but in the existing population metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.